Displaying publications 21 - 40 of 64 in total

Abstract:
Sort:
  1. Dharmalingam SK, Taek YS, Mahadev V
    Med J Malaya, 1970 Sep;25(1):3-7.
    PMID: 4249493
    Matched MeSH terms: Iodine Isotopes/administration & dosage; Iodine Isotopes/adverse effects; Iodine Isotopes/therapeutic use*
  2. van der Ent A, Nkrumah PN, Aarts MGM, Baker AJM, Degryse F, Wawryk C, et al.
    BMC Plant Biol, 2021 Sep 27;21(1):437.
    PMID: 34579652 DOI: 10.1186/s12870-021-03190-4
    BACKGROUND: Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo).

    RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies.

    CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.

    Matched MeSH terms: Zinc Isotopes/metabolism*; Zinc Isotopes/chemistry
  3. Marshall DG, Jackson TA, Unelius CR, Wee SL, Young SD, Townsend RJ, et al.
    Naturwissenschaften, 2016 Aug;103(7-8):59.
    PMID: 27352077 DOI: 10.1007/s00114-016-1380-1
    Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine ((13)C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria.
    Matched MeSH terms: Carbon Isotopes/analysis; Carbon Isotopes/metabolism
  4. Muhammad SA, Hayman AR, Van Hale R, Frew RD
    J Forensic Sci, 2015 Jan;60 Suppl 1:S56-65.
    PMID: 25131396 DOI: 10.1111/1556-4029.12551
    Compound-specific isotope analysis offers potential for fingerprinting of diesel fuels, however, possible confounding effects of isotopic fractionation due to evaporation need to be assessed. This study measured the fractionation of the stable carbon and hydrogen isotopes in n-alkane compounds in neat diesel fuel during evaporation. Isotope ratios were measured using a continuous flow gas chromatograph/isotope ratio mass spectrometer. Diesel samples were progressively evaporated at 24 ± 2°C for 21 days. Increasing depletion of deuterium in nC12-nC17 alkanes in the remaining liquid with increasing carbon chain length was observed. Negligible carbon isotope fractionation was observed. Preferential vaporization was measured for the shorter chain n-alkanes and the trend decreased with increasing chain length. The decrease in δ(2) H values indicates the preferential vaporization of the isotopically heavier species consistent with available quantitative data for hydrocarbons. These results are most important in the application of stable isotope technology to forensic analysis of diesel.
    Matched MeSH terms: Carbon Isotopes
  5. Hasan N, Osman H, Mohamad S, Chong WK, Awang K, Zahariluddin AS
    Pharmaceuticals (Basel), 2012;5(8):882-9.
    PMID: 24280680 DOI: 10.3390/ph5080882
    Three isoflavanoids, isovestitol (1), medicarpin (2), and sativan (3), along with another known compound, betulinic acid (4), were isolated from the root of Sesbania grandiflora. The structures of the isolated compounds were characterised by means of spectroscopic techniques (UV, IR, MS, 1H- and 13C-NMR, DEPT, COSY, HMQC, HMBC, and MS analysis). All the tested compounds 1-4 exhibited antituberculosis activity against Mycobacterium tuberculosis H37Rv, with MIC values of 50 µg/mL for compounds 1-3, and 100 µg/mL for compound 4, whereas, the methanol extract exhibited antituberculosis activity of 625 µg/mL. This is the first report on the occurrence of isoflavonoids in this plant and their antituberculosis activity.
    Matched MeSH terms: Carbon Isotopes
  6. Muhammad SA, Frew RD, Hayman AR
    Front Chem, 2015;3:12.
    PMID: 25774366 DOI: 10.3389/fchem.2015.00012
    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ(13)C and δ(2)H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples.
    Matched MeSH terms: Isotopes
  7. Ali SKI, Khandaker MU, Al-Mugren KS, Latif SA, Bradley DA, Okhunov AA, et al.
    Appl Radiat Isot, 2021 Jul;173:109735.
    PMID: 33915407 DOI: 10.1016/j.apradiso.2021.109735
    Copper-67 (T1/2 = 61.83 h, Eβ-mean=141 keV, Iβ-total=100%; Eγ = 184.577 keV, Iγ = 48.7%) is a promising radionuclide for theranostic applications especially in radio immunotherapy. However, one of the main drawbacks for its application is related to its limited availability. Various nuclear reaction routes investigated in the last years can result in 67Cu production, although the use of proton beams is the method of choice taken into account in this work. The goal of this work is a revision of the cross-sections aimed at 67Cu yield, which were evaluated for the 68Zn(p,2p)67Cu reaction route up to 80 MeV proton energy. A well-defined statistical procedure, i.e., the Simultaneous Evaluation on KALMAN (SOK), combined with the least-squares concept, was used to obtain the evaluated data together with the covariance matrix. The obtained evaluated data were also compared to predictions provided by the nuclear reaction model codes TALYS and EMPIRE, and a partial agreement among them has been found. These data may be useful for both existing and potential applications in nuclear medicine, to achieve an improvement and validation of the various nuclear reaction models, and may also find applications in other fields (e.g., activation analysis and thin layer activation).
    Matched MeSH terms: Zinc Isotopes
  8. Zainordin 'F, Ab Hamid S
    Trop Life Sci Res, 2017 Jul;28(2):9-29.
    PMID: 28890758 MyJurnal DOI: 10.21315/tlsr2017.28.2.2
    Stable isotope analysis has been used extensively to establish trophic relationships in many ecosystems. Present study utilised stable isotope signatures of carbon and nitrogen to identify trophic structure of aquatic food web in river and rice field ecosystems in Perak, northern peninsular Malaysia. The mean δ(13)C values of all producers ranged from -35.29 ± 0.21 to -26.00 ± 0.050‰. The greatest δ(15)N values noted was in zenarchopterid fish with 9.68 ± 0.020‰. The δ(15)N values of aquatic insects ranged between 2.59 ± 0.107 in Elmidae (Coleoptera) and 8.11 ± 0.022‰ in Nepidae (Hemiptera). Correspondingly, with all the δ(13)C and δ(15)N values recorded, it can be deduced that there are four trophic levels existed in the freshwater ecosystems which started with the producer (plants), followed by primary consumer (aquatic insects and non-predatory fish), secondary consumer (invertebrate predators) and lastly tertiary consumer (vertebrate predators).
    Matched MeSH terms: Isotopes
  9. Wardiatno Y, Mardiansyah, Prartono T, Tsuchiya M
    Trop Life Sci Res, 2015 Apr;26(1):53-65.
    PMID: 26019747
    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ(13)C and δ(15)N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: -22.4‰ and 8.6‰ for Cerithidea sp., -25.06‰ and 8‰ for C. mustelina, -22.58‰ and 8‰ for P. verruculata, -24.3‰ and 10.6‰ for unidentified Grapsidae, -21.87 ‰ and 11.5 ‰ for Uca sp., -29.81‰ and 11‰ for K. candel, and -24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers.
    Matched MeSH terms: Nitrogen Isotopes
  10. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K
    Environ Monit Assess, 2010 Sep;168(1-4):63-90.
    PMID: 19609693 DOI: 10.1007/s10661-009-1092-5
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na(+)), potassium (K(+)), calcium (Ca(+)), magnesium (Mg(+)), bicarbonate (HCO(-)(3)), sulfate (SO(-)(4)), phosphate (PO(-)(4)), and silica (H(4)SiO(4)) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region.
    Matched MeSH terms: Isotopes/analysis
  11. Adiana G, Juahir H, Joseph B, Shazili NAM
    Mar Pollut Bull, 2017 Oct 15;123(1-2):232-240.
    PMID: 28865793 DOI: 10.1016/j.marpolbul.2017.08.055
    The present study aims to define the possible sources that contribute to the level of Pb into the Brunei Bay, Borneo. The cluster analysis has classified the bay into the northern part with heavy and agriculture-related industries; the southern area with a moderate rural human settlement as well as the southwestern area with a more pristine environment and a low level of human settlement. The score plot of spatial discriminant analysis verified a significant influence of the river system toward the estuary, whereas the temporal discriminant analysis has discriminated the seasonal changes. In comparison to elsewhere, the stable Pb isotopic ratios in Brunei Bay showed a fingerprint similar to coal-related sources and of aerosol input. Briefly, even though Pb in the Brunei Bay ecosystem proved to be at a low level, the stable Pb isotopic ratios showed that human and industrial activities are slowly contributing Pb into the bay ecosystem.
    Matched MeSH terms: Isotopes/analysis
  12. Ahmad P, Khandaker MU, Muhammad N, Rehman F, Ullah Z, Khan G, et al.
    Appl Radiat Isot, 2020 Dec;166:109404.
    PMID: 32956924 DOI: 10.1016/j.apradiso.2020.109404
    The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.
    Matched MeSH terms: Isotopes/therapeutic use; Isotopes/chemistry
  13. Bah AR, Rahman ZA
    ScientificWorldJournal, 2001 Nov 22;1 Suppl 2:90-5.
    PMID: 12805783
    Use of cheap, N-rich, and environmentally benign legume green manures to correct N deficiency in infertile soils is a very attractive option in the humid tropics. Understanding the influence of management and climate on their effectiveness, and quantifying their contribution to crop productivity, is therefore crucial for technology adoption and adaptation. Mineral N buildup and the contribution to N uptake in maize were studied in an Ultisol amended with fresh Gliricidia leaves. Net mineral N accumulation was compared in mulched and incorporated treatments in a field incubation study. The 15 N isotope dilution technique was used to quantify N supplied to maize by Gliricidia leaves in an alley cropping. Mineral N accumulation was slow, but was much greater after incorporation than after mulching. Also, N buildup was always higher in the topsoil (0 to 10 cm) than in the subsoil (10 to 20 cm). More NO3-N was leached than NH4-N, and the effect was greater in the incorporated treatment. Surface-applied Gliricidia leaves significantly increased N uptake by maize, and supplied >30% of the total N in the stover and >20% of that in the corn grain, even in the presence of hedgerows. Thus Gliricidia leaf mulch has immense potential to improve productivity in tropical soils.
    Matched MeSH terms: Nitrogen Isotopes
  14. Tye AM, Young SD, Crout NM, Zhang H, Preston S, Bailey EH, et al.
    Environ Sci Technol, 2002 Mar 1;36(5):982-8.
    PMID: 11924544
    An isotopic dilution assay was developed to measure radiolabile As concentration in a diverse range of soils (pH 3.30-7.62; % C = 1.00-6.55). Soils amended with 50 mg of As kg(-1) (as Na2HAsO4 x 7H2O) were incubated for over 800 d in an aerated "microcosm" experiment. After 818 d, radiolabile As ranged from 27 to 57% of total applied As and showed a pH-dependent increase above pH 6. The radiolabile assay was also applied to three sets of soils historically contaminated with sewage sludge or mine-spoil. Results reflected the various geochemical forms in which the arsenic was present. On soils from a sewage disposal facility, radiolabile arsenate ranged from 3 to 60% of total As; mean lability was lower than in the equivalent pH range of the microcosm soils, suggesting occlusion of As into calcium phosphate compounds in the sludge-amended soils. In soils from mining areas in the U.K. and Malaysia, radiolabile As accounted for 0.44-19% of total As. The lowest levels of lability were associated with extremely large As concentrations, up to 17,000 mg kg(-1), from arsenopyrite. Soil pore water was extracted from the microcosm experiment and speciated using "GEOCHEM". The solid<==>solution equilibria of As in the microcosm soils was described by a simple model based on competition between HAsO4(2-) and HPO4(2-) for "labile" adsorption sites.
    Matched MeSH terms: Isotopes
  15. Kadir MA, Abdul Razak FI, Haris NSH
    Data Brief, 2020 Oct;32:106263.
    PMID: 32905010 DOI: 10.1016/j.dib.2020.106263
    The data in this article provide information on spectroscopic and theoretical data for p-chlorocalix[4]arene when combined with selected drugs, such as paracetamol, ibuprofen, and cetirizine. The present spectroscopic data are generated from Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR and 13C NMR), and Ultraviolet-Visible spectroscopy (UV-Vis) as the key tools for molecular characterization. The measurement of the optimization energy, interaction energy, and the band gap energy between the molecules was calculated by Gaussian 09 software. It is interesting to note that of the three titled drugs identified, p-chlorocalix[4]arene showed the highest interaction energy with paracetamol, followed by ibuprofen and cetirizine.
    Matched MeSH terms: Carbon Isotopes
  16. Lasekan O, Dabaj F, Muniandy M, Juhari NH, Lasekan A
    BMC Chem, 2021 Mar 13;15(1):16.
    PMID: 33714268 DOI: 10.1186/s13065-021-00743-4
    BACKGROUND: To evaluate the impact of cold fermentation time on bagel rolls, the key aroma-active compounds in the volatile fractions obtained from three different bagel rolls through solvent assisted flavor evaporation (SAFE) were sequentially characterized by an aroma extract dilution analysis (AEDA), quantified by stable isotope dilution and analyzed by odor activity values (OAVs) respectively.

    RESULTS: Findings revealed 40 aroma-active compounds with flavor dilution (FD) factor ranges of 2-1024. Of these, 22 compounds (FD ≥ 16) were quantified by stable isotope dilution assays (SIDA). Subsequent analysis of the 22 compounds by odor activity values (OAVs) revealed 14 compounds with OAVs ≥ 1 and the highest concentrations were obtained for 2,3-butanedione, 2-phenylethanol, 3-methylbutanal and acetoin respectively. Two recombination models of the bagels (i.e. 24 h and 48 h bagels) showed similarity to the corresponding bagels. Omission tests confirmed that 2,3-butanedione (buttery), acetoin (buttery), 2-acetyl-1-pyrroline (roasty), 5-methyl-2-furanmethanol (bread-like), (Z)-4-heptenal (biscuit-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, were the key aroma compounds. Additionally, acetic acid, butanoic acid, 2-phenylethanol (honey-like), 3-methylbutanoic acid, 2/3-methylbutanal, vanillin, 3-methylbutanol, methional were also important odorants of the bagel.

    CONCLUSION: Whilst the long, cold fermented bagels exhibited roasty, malty, buttery, baked potato-like, smoky and biscuit-like notes, the control bagels produced similar but less intense odor notes.

    Matched MeSH terms: Isotopes
  17. Yusof ENM, Latif MAM, Tahir MIM, Sakoff JA, Simone MI, Page AJ, et al.
    Int J Mol Sci, 2019 Feb 15;20(4).
    PMID: 30781445 DOI: 10.3390/ijms20040854
    Six new organotin(IV) compounds of Schiff bases derived from S-R-dithiocarbazate [R = benzyl (B), 2- or 4-methylbenzyl (2M and 4M, respectively)] condensed with 2-hydroxy-3-methoxybenzaldehyde (oVa) were synthesised and characterised by elemental analysis, various spectroscopic techniques including infrared, UV-vis, multinuclear (¹H, 13C, 119Sn) NMR and mass spectrometry, and single crystal X-ray diffraction. The organotin(IV) compounds were synthesised from the reaction of Ph₂SnCl₂ or Me₂SnCl₂ with the Schiff bases (S2MoVaH/S4MoVaH/SBoVaH) to form a total of six new organotin(IV) compounds that had a general formula of [R₂Sn(L)] (where L = Schiff base; R = Ph or Me). The molecular geometries of Me₂Sn(S2MoVa), Me₂Sn(S4MoVa) and Me₂Sn(SBoVa) were established by X-ray crystallography and verified using density functional theory calculations. Interestingly, each experimental structure contained two independent but chemically similar molecules in the crystallographic asymmetric unit. The coordination geometry for each molecule was defined by thiolate-sulphur, phenoxide-oxygen and imine-nitrogen atoms derived from a dinegative, tridentate dithiocarbazate ligand with the remaining positions occupied by the methyl-carbon atoms of the organo groups. In each case, the resulting five-coordinate C₂NOS geometry was almost exactly intermediate between ideal trigonal-bipyramidal and square-pyramidal geometries. The cytotoxic activities of the Schiff bases and organotin(IV) compounds were investigated against EJ-28 and RT-112 (bladder), HT29 (colon), U87 and SJ-G2 (glioblastoma), MCF-7 (breast) A2780 (ovarian), H460 (lung), A431 (skin), DU145 (prostate), BE2-C (neuroblastoma) and MIA (pancreatic) cancer cell lines and one normal breast cell line (MCF-10A). Diphenyltin(IV) compounds exhibited greater potency than either the Schiff bases or the respective dimethyltin(IV) compounds. Mechanistic studies on the action of these compounds against bladder cancer cells revealed that they induced the production of reactive oxygen species (ROS). The bladder cancer cells were apoptotic after 24 h post-treatment with the diphenyltin(IV) compounds. The interactions of the organotin(IV) compounds with calf thymus DNA (CT-DNA) were experimentally explored using UV-vis absorption spectroscopy. This study revealed that the organotin(IV) compounds have strong DNA binding affinity, verified via molecular docking simulations, which suggests that these organotin(IV) compounds interact with DNA via groove-binding interactions.
    Matched MeSH terms: Carbon Isotopes
  18. Chen YL, Shi L, Agbo F, Yong SH, Tan PS, Ngounou Wetie AG
    J Pharm Biomed Anal, 2020 Oct 25;190:113493.
    PMID: 32795778 DOI: 10.1016/j.jpba.2020.113493
    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous quantification of apomorphine and its metabolites apomorphine sulfate and norapomorphine in human plasma for supporting clinical development of a novel apomorphine sublingual thin film (APL) for the treatment of Parkinson's disease. Analytes and internal standards (IS) were extracted from human plasma by Oasis HLB SPE cartridge, followed by a reversed phase LC-MS/MS analysis using multiple reaction monitoring (MRM) in positive mode (m/z 268 → 237 for apomorphine, 348 → 237 for apomorphine sulfate, and 348 → 237 for norapomorphine). Stable isotope-labeled compounds were used as IS for respective analytes. The validated curve ranges were 0.02-20 ng/mL, 10-1000 ng/mL, and 0.5-20 ng/mL for apomorphine, apomorphine sulfate and norapomorphine, respectively. Extraction recoveries were found to be 73.4 % (apomorphine), 81.1 % (apomorphine sulfate), and 58.6 % (norapomorphine). Established long-term plasma frozen storage stabilities were 504 days at -20 °C and276 days at -60 °C, respectively. The method has been successfully used for analyzing pharmacokinetics (PK) samples collected from a comparative bioavailability study of APL and the marketed apomorphine subcutaneous (s.c.) product Apo-go®. The results demonstrated that the 15-mg APL film administrated via sublingual produced comparable PK characteristics of apomorphine when compared to the commercial product Apo-go (2-mg) via s.c. administration, hence establishing the dose regimen for this sublingual formulation. It was also noticed that the sublingual 15-mg APL film produced a significantly higher apomorphine sulfate metabolite level than the 2-mg s.c. Apo-go, and both treatments yielded a negligible level of norapomorphine metabolite in humans.
    Matched MeSH terms: Isotopes
  19. Abbasi MA, Hassan M, Aziz-Ur-Rehman, Siddiqui SZ, Shah SAA, Raza H, et al.
    PeerJ, 2018;6:e4962.
    PMID: 29967717 DOI: 10.7717/peerj.4962
    The present study comprises the synthesis of a new series of sulfonamides derived from 4-methoxyphenethylamine (1). The synthesis was initiated by the reaction of 1 with 4-methylbenzenesulfonyl chloride (2) in aqueous sodium carbonate solution at pH 9 to yield N-(4-methoxyphenethyl)-4-methylbenzensulfonamide (3).This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides, (4a-j), using N,N-dimethylformamide (DMF) as solvent and LiH as activator to produce a series of new N-(4-methoxyphenethyl)-N-(substituted)-4-methylbenzenesulfonamides (5a-j). The structural characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. The elemental analysis data was also coherent with spectral data of these molecules. The inhibitory effects on acetylcholinesterase and DPPH were evaluated and it was observed that N-(4-Methoxyphenethyl)-4-methyl-N-(2-propyl)benzensulfonamide (5c) showed acetylcholinesterase inhibitory activity 0.075 ± 0.001 (IC50 0.075 ± 0.001 µM) comparable to Neostigmine methylsulfate (IC50 2.038 ± 0.039 µM).The docking studies of synthesized ligands 5a-j were also carried out against acetylcholinesterase (PDBID 4PQE) to compare the binding affinities with IC50 values. The kinetic mechanism analyzed by Lineweaver-Burk plots demonstrated that compound (5c) inhibits the acetylcholinesterase competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (5c) is 2.5 µM. It was also found from kinetic analysis that derivative 5c irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound 5c may serve as lead structure for the design of more potent acetylcholinesterase inhibitors.
    Matched MeSH terms: Carbon Isotopes
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links