METHODS: A cross-sectional study was conducted among 340 participants (165 Orang Asli and 175 Malay) aged ≤ 15 years from the Hulu Terengganu and Kemaman districts of Terengganu. Faecal samples were examined for the presence of intestinal parasites by using direct smear, formalin-ether sedimentation, trichrome stain, modified Ziehl Neelsen stain, in vitro cultivation in Jones' medium, Kato Katz and Harada Mori techniques. Demographic, socioeconomic, environmental and behavioural information of the participants and their KAP for IPIs were collected by using a pre-tested questionnaire.
RESULTS: Overall, 149 (90.3 %) Orang Asli and 43 (24.6 %) Malay children were infected by at least one parasite species. The overall prevalences of intestinal polyparasitism among the Orang Asli and Malay were 68.5 % (113/165) and 14.3 % (25/175), respectively. Multiple logistic regression analysis showed that using unsafe water supply as a source for drinking water, the presence of domestic animals, not wearing shoes when outside, not washing vegetables before consumption, not washing hands after playing with soil, indiscriminate defecation and the low level of mother's education were the key risk factors for intestinal polyparasitism among the Orang Asli, while working mothers and the presence of domestic animals were the risk factors among the Malay children. Almost all the Malays were well aware about the IPIs while Orang Asli respondents had a poor level of related awareness.
CONCLUSIONS: This study demonstrates that IPIs are highly prevalent in rural Terengganu, Malaysia. Community awareness about IPIs was found to be imperative in protecting Malay children from these infections. An integrated control programme for the prevention and control of IPIs is highly recommended for these communities, with a special emphasis on the Orang Asli population.
METHODS: A total of 30 macaques were sampled for blood, faeces and hair plucks to detect parasite.
RESULTS: Out of 21 faecal samples examined, 11 (52%) were determined positive for one or more gastrointestinal parasites, namely Trichostrongylus spp., Strongyloides spp., Anatrichosoma spp., Capillaria spp., Trichuris spp. and Paramphisotomum spp. Filaria was detected in one (3%) of the blood samples. For ectoparasites, only lice, Pedicinus sp., were found in 9 (30%) macaques.
CONCLUSIONS: It is imperative that the parasitic status of these animals be determined so that necessary actions and preventive measures can be implemented to prevent zoonotic transmissions.
AREAS COVERED: The present article will review the diseases associated with IPI and discuss the current IPI control strategies such as the water, sanitation, and hygiene (WASH) interventions, community-led total sanitation (CLTS) approach, and regular anthelminthic treatments. For the first time, this review will also evaluate all currently practised diagnostic techniques for the detection of intestinal parasites and provide insights on future IPI control strategies.
EXPERT OPINION: Advanced and improved diagnostic methods such as qPCR coupled with a high-resolution melting curve, aptamers, biosensors, and detection of extracellular vesicles can be used for detection of IPI. Vaccination against intestinal parasites can be made available to increase antibodies to interfere with the blood-feeding process by the parasites, which subsequently reduces the reproductive rates of the parasites. These methods collectively can serve as future management strategies for intestinal parasitic infections.