Due to the 1997/98 haze problem in South-East Asia and the increasing need for sustainable food production and development, the usual management of crop residues (including pineapple wastes) through burning is prohibited. As a result, the need for alternative uses of pineapple wastes in pineapple production has been emphasized. This study investigated an environmentally friendly means of recycling pineapple leaves for agricultural use. Pineapple leaves were shredded and composted in a composting drum for 30 days. Part of the shredded leaves was ashed in a muffle furnace for 4 h. Humic acid (HA), K-fulvate, and K in HA and compost were analyzed using standard procedures. An ash to water ratio of 1:7 was used to extract 0.1 molar (M) KOH from the shredded leaves. The 0.1 M KOH contained 50% K and was able to extract 20% HA from the composted pineapple leaves. Percent K in the fulvate using 0.1 M KOH was 43. Besides serving as a foliar spray (supplement soil application K fertilizers), source of K for freshwater fish (e.g., tilapia), the HA produced can be used as a soil conditioner. Studies show that between 0.05-0.01 g of HA per kg soil retards runoff by 36% in sandy and sandy loam soils. The K-fulvate can be used as a fluid fertilizer. In addition, the pH of 2 of the K-fulvate suggests it could be used to dissolve phosphate rocks, particularly those in the arid regions where high soil pH does not facilitate the dissolution of these important rocks that serve as one of the sources of phosphorus fertilizer in agriculture.
Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.
Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol-gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV-visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm(-2) at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm(-2) from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal.
In this study, the antifouling properties of polyethersulfone (PES) membranes blended with different amounts of ZnO nanoparticles and a fixed ratio of N-methyl-2-pyrrolidone (NMP)-acetone mixture as a solvent were investigated. The properties and performance of the fabricated membranes were examined in terms of hydrophilicity, porosity, pore size, surface and cross-section image using scanning electron microscopy (SEM), surface roughness using atomic force microscopy (AFM), pure water flux, and humic acid filtration. Addition of ZnO as expected was found to improve the hydrophilicity as well as to encourage pore formation. However, the agglomeration of ZnO at a higher concentration cannot be avoided even when dissolved in a mixed solvent. The presence of highly volatile acetone contributed to the tight skin layer of the membrane which shows remarkable antifouling ability with the highest flux recovery ratio and negligible irreversible fouling. ZnO NPs in acetone/NMP mixed solvent shows an improvement in flux and rejection, but, the fouling resistance was moderate compared to the pristine membrane.
Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.
A new sample pre-treatment technique termed cone-shaped membrane liquid phase microextraction (CSM-LPME) was developed and combined with micro-liquid chromatography (micro-LC) for the determination of selected pesticides in water samples. Four pesticides (hexaconazole, procymidone, quinalphos and vinclozolin) were considered as target analytes. Several important extraction parameters such as types of extraction solvent, agitation rate, pH value, total exposure time and effect of salt and humic acids were optimized. Enrichment factors of > 50 folds were easily achieved within 20 min of extraction. The analytical data demonstrated relative standard deviations for the reproducibility of the optimized CSM-LPME method ranging from 6.3 to 7.5%. The correlation coefficients of the calibration curves were at least 0.9995 across a concentration range of 2-100 microg/L. The detection limits for all the analytes were found to be in the range of 1.1-1.9 microg/L.