Displaying publications 21 - 40 of 254 in total

Abstract:
Sort:
  1. Kam TS, Sim KM, Koyano T, Toyoshima M, Hayashi M, Komiyama K
    Bioorg Med Chem Lett, 1998 Jul 07;8(13):1693-6.
    PMID: 9873417
    Four new bisindoles of the vobasine-iboga type, conodiparines A-D were obtained from Tabernaemontana corymbosa which showed appreciable activity in reversing resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Drug Resistance, Multiple*
  2. AlMatar M, Albarri O, Makky EA, Var I, Köksal F
    Mini Rev Med Chem, 2020;20(18):1908-1916.
    PMID: 32811410 DOI: 10.2174/1389557520666200818211405
    The need for new therapeutics and drug delivery systems has become necessary owing to the public health concern associated with the emergence of multidrug-resistant microorganisms. Among the newly discovered therapeutic agents is cefiderocol, which was discovered by Shionogi Company, Japan as an injectable siderophore cephalosporin. Just like the other β-lactam antibiotics, cefiderocol exhibits antibacterial activity via cell wall synthesis inhibition, especially in Gram negative bacteria (GNB); it binds to the penicillin-binding proteins, but its unique attribute is that it crosses the periplasmic space of bacteria owing to its siderophore-like attribute; it also resists the activity of β-lactamases. Among all the synthesized compounds with the modified C-7 side chain, cefiderocol (3) presented the best and well-balanced activity against multi-drug resistant (MDR) Gram negative bacteria, including those that are resistant to carbapenem. İn this article, an overview of the recent studies on cefiderocol was presented.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/drug effects*
  3. Ang CF, Ong CS, Rukmana A, Pham Thi KL, Yap SF, Ngeow YF, et al.
    J Med Microbiol, 2008 Aug;57(Pt 8):1039-1040.
    PMID: 18628510 DOI: 10.1099/jmm.0.47850-0
    Matched MeSH terms: Drug Resistance, Multiple*
  4. Lau HJ, Lim CH, Foo SC, Tan HS
    Curr Genet, 2021 Jun;67(3):421-429.
    PMID: 33585980 DOI: 10.1007/s00294-021-01156-5
    Antimicrobial resistance (AMR) in bacteria is a global health crisis due to the rapid emergence of multidrug-resistant bacteria and the lengthy development of new antimicrobials. In light of this, artificial intelligence in the form of machine learning has been viewed as a potential counter to delay the spread of AMR. With the aid of AI, there are possibilities to predict and identify AMR in bacteria efficiently. Furthermore, a combination of machine learning algorithms and lab testing can help to accelerate the process of discovering new antimicrobials. To date, many machine learning algorithms for antimicrobial-resistance discovery had been created and vigorously validated. Most of these algorithms produced accurate results and outperformed the traditional methods which relied on sequence comparison within a database. This mini-review will provide an updated overview of antimicrobial design workflow using the latest machine-learning antimicrobial discovery algorithms in the last 5 years. With this review, we hope to improve upon the current AMR identification and antimicrobial development techniques by introducing the use of AI into the mix, including how the algorithms could be made more effective.
    Matched MeSH terms: Drug Resistance, Multiple/genetics
  5. Abdul-Aziz MH, Lipman J, Roberts JA
    Curr. Opin. Infect. Dis., 2017 Apr;30(2):231-239.
    PMID: 28030371 DOI: 10.1097/QCO.0000000000000348
    PURPOSE OF REVIEW: Nosocomial pneumonia caused by multidrug-resistant pathogens is increasing in the ICU, and these infections are negatively associated with patient outcomes. Optimization of antibiotic dosing has been suggested as a key intervention to improve clinical outcomes in patients with nosocomial pneumonia. This review describes the recent pharmacokinetic/pharmacodynamic data relevant to antibiotic dosing for nosocomial pneumonia caused by multidrug-resistant pathogens.

    RECENT FINDINGS: Optimal antibiotic treatment is challenging in critically ill patients with nosocomial pneumonia; most dosing guidelines do not consider the altered physiology and illness severity associated with severe lung infections. Antibiotic dosing can be guided by plasma drug concentrations, which do not reflect the concentrations at the site of infection. The application of aggressive dosing regimens, in accordance to the antibiotic's pharmacokinetic/pharmacodynamic characteristics, may be required to ensure rapid and effective drug exposure in infected lung tissues.

    SUMMARY: Conventional antibiotic dosing increases the likelihood of therapeutic failure in critically ill patients with nosocomial pneumonia. Alternative dosing strategies, which exploit the pharmacokinetic/pharmacodynamic properties of an antibiotic, should be strongly considered to ensure optimal antibiotic exposure and better therapeutic outcomes in these patients.

    Matched MeSH terms: Drug Resistance, Multiple, Bacterial*
  6. Hasan MJ, Shamsuzzaman SM
    Malays J Pathol, 2017 Dec;39(3):277-283.
    PMID: 29279590
    BACKGROUND: The adeB gene in Acinetobacter baumannii regulates the bacterial internal drug efflux pump that plays a significant role in drug resistance. The aim of our study was to determine the occurrence of adeB gene in multidrug resistant and New Delhi metallo-beta-lactamase-1 (NDM- 1) gene in imipenem resistant Acinetobacter baumannii isolated from wound swab samples in a tertiary care hospital of Bangladesh.

    METHODS: A total of 345 wound swab samples were tested for bacterial pathogens. Acinetobacter baumannii was identified by culture and biochemical tests. Antimicrobial susceptibility pattern was determined by the disc diffusion method according to CLSI standards. Extended spectrum beta-lactamases were screened using the double disc synergy technique. Gene encoding AdeB efflux pump and NDM-1 were detected by Polymerase Chain Reaction (PCR).

    RESULTS: A total 22 (6.37%) Acinetobacter baumannii were identified from 345 wound swab samples and 20 (91%) of them were multidrug resistant. High resistance rates to some antibiotics were seen namely, cefotaxime (95%), amoxyclavulanic acid (90%) and ceftriaxone (82%). All the identified Acinetobacter baumannii were sensitive to colistin and 82% to imipenem. Two (9%) ESBL producing Acinetobacter baumannii strains were detected. adeB gene was detected in 16 (80%) out of 20 multidrug resistant Acinetobacter baumannii. 4 (18%) of 22 Acinetobacter baumannii were imipenem resistant. NDM-1 gene was detected in 2 (50%) of the imipenem resistant strains of Acinetobacter baumannii.

    CONCLUSION: The results of this study provide insight into the role of adeB gene as a potential regulator of drug resistance in Acinetobacter baumanni in Bangladesh. NDM-1 gene also contributes in developing such resistance for Acinetobacter baumannii.

    Matched MeSH terms: Drug Resistance, Multiple/genetics*
  7. Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, et al.
    BMC Vet Res, 2019 May 28;15(1):176.
    PMID: 31138199 DOI: 10.1186/s12917-019-1907-8
    BACKGROUND: Vibriosis is an important bacterial disease of cultured marine fishes worldwide. However, information on the virulence and antibiotic resistance of Vibrio spp. isolated from fish are scarce. This study investigates the distribution of virulence associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cage-cultured marine fishes in Malaysia.

    RESULTS: A total of 63 Vibrio spp. isolated from 62 cultured marine fishes in various geographical regions in Peninsular Malaysia were analysed. Forty-two of the isolates (66.7%) were positive for all chiA, luxR and vhpA, the virulence genes produced by pathogenic V. harveyi. A total of 62 Vibrio isolates (98%) had tlh gene of V. parahaemolyticus, while flaC gene of V. anguillarum was detected in 43 of isolates (68%). Other virulence genes, including tdh, trh, hlyA and toxRvc were absent from any of the isolates. Multiple antibiotic resistance (MAR) was exhibited in all strains of Harveyi clade, particularly against ampicillin, penicillin, polypeptides, cephems and streptomycin. The MAR index ranged between 0.06 and 0.56, and 75% of the isolates have MAR index of higher than 0.20. Host species and geographical origin showed no correlation with the presence of virulence genes and the antibiotic resistance patterns of Vibrio spp.

    CONCLUSIONS: The study indicates that majority of Vibrio spp. isolated from cultured marine fishes possess virulence genes, but were not associated with human pathogen. However, the antibiotics resistance is a real concern and warrants ongoing surveillance. These findings represent an updated knowledge on the risk of Vibrio spp. to human health, and also provides valuable insight on alternative approaches to combat vibriosis in cultured fish.

    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  8. Chia PY, Sengupta S, Kukreja A, S L Ponnampalavanar S, Ng OT, Marimuthu K
    PMID: 32046775 DOI: 10.1186/s13756-020-0685-1
    Infections by multidrug-resistant (MDR) Gram-negative organisms (GN) are associated with a high mortality rate and present an increasing challenge to the healthcare system worldwide. In recent years, increasing evidence supports the association between the healthcare environment and transmission of MDRGN to patients and healthcare workers. To better understand the role of the environment in transmission and acquisition of MDRGN, we conducted a utilitarian review based on literature published from 2014 until 2019.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/drug effects*
  9. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Molecules, 2018 Dec 06;23(12).
    PMID: 30563220 DOI: 10.3390/molecules23123220
    Antibiotic resistance is one of the most important global problems currently confronting the world. Different biomedical applications of silver nanoparticles (AgNPs) have indicated them to be promising antimicrobial agents. In the present study, extracellular extract of an endophytic bacterium, Pantoea ananatis, was used for synthesis of AgNPs. The synthesized AgNPs were characterized by UV⁻Vis spectroscopy, FTIR, transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Zeta potential. The antimicrobial potential of the AgNPs against pathogenic Staphylococcus aureus subsp. aureus (ATCC 11632), Bacillus cereus (ATCC 10876), Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 10145) and Candida albicans (ATCC 10231), and multidrug resistant (MDR) Streptococcus pneumoniae (ATCC 700677), Enterococcus faecium (ATCC 700221) Staphylococcus aureus (ATCC 33592) Escherichia coli (NCTC 13351) was investigated. The synthesized spherical-shaped AgNPs with a size range of 8.06 nm to 91.32 nm exhibited significant antimicrobial activity at 6 μg/disc concentration against Bacillus cereus (ATCC 10876) and Candida albicans (ATCC 10231) which were found to be resistant to conventional antibiotics. The synthesized AgNPs showed promising antibacterial efficiency at 10 µg/disc concentration against the MDR strains. The present study suggests that AgNPs synthesized by using the endophytic bacterium P. ananatis are promising antimicrobial agent.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/drug effects*
  10. Noorizhab MNF, Zainal Abidin N, Teh LK, Tang TH, Onyejepu N, Kunle-Ope C, et al.
    Tuberculosis (Edinb), 2023 May;140:102343.
    PMID: 37080082 DOI: 10.1016/j.tube.2023.102343
    Multidrug-resistant (MDR) or extensively drug-resistant (XDR) Tuberculosis (TB) is a major challenge to global TB control. Therefore, accurate tracing of in-country MDR-TB transmission are crucial for the development of optimal TB management strategies. This study aimed to investigate the diversity of MTBC in Nigeria. The lineage and drug-resistance patterns of the clinical MTBC isolates of TB patients in Southwestern region of Nigeria were determined using the WGS approach. The phenotypic DST of the isolates was determined for nine anti-TB drugs. The sequencing achieved average genome coverage of 65.99X. The most represented lineages were L4 (n = 52, 83%), L1 (n = 8, 12%), L2 (n = 2, 3%) and L5 (n = 1, 2%), suggesting a diversified MTB population. In term of detection of M/XDR-TB, while mutations in katG and rpoB genes are the strong predictors for the presence of M/XDR-TB, the current study also found the lack of good genetic markers for drug resistance amongst the MTBC in Nigeria which may pose greater problems on local tuberculosis management efforts. This high-resolution molecular epidemiological data provides valuable insights into the mechanistic for M/XDR TB in Lagos, Nigeria.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  11. Thong KL, Hoe CH, Koh YT, Yasin RM
    J Health Popul Nutr, 2002 Dec;20(4):356-8.
    PMID: 12659418
    Matched MeSH terms: Drug Resistance, Multiple*
  12. Salawudeen A, Raji YE, Jibo GG, Desa MNM, Neoh HM, Masri SN, et al.
    Antimicrob Resist Infect Control, 2023 Dec 07;12(1):142.
    PMID: 38062531 DOI: 10.1186/s13756-023-01346-5
    The rising prevalence of multidrug-resistant (MDR) and extended-spectrum beta lactamase-resistant (ESBL) Klebsiella pneumoniae (K. pneumoniae) is an important global public health challenge. This threat is even more pertinent in clinical settings. Morbidity and mortality associated with this condition are alarming particularly in the developing regions of the world. A comprehensive evaluation of the epidemiology of this phenomenon will assist towards the global effort of reducing its burden. So, this systematic review and meta-analysis was conducted to evaluate the epidemiology of MDR K. pneumoniae in South-Eastern Asia (SEA). The study was done under the PRISMA guidelines and was preceded by the development of a priori protocol. The protocol was then registered in PROSPERO-the public registry for systematic reviews. Seven important outcomes which include the assessment of the overall MDR K. pneumoniae prevalence were designed to be evaluated. A literature search was carried out in five selected electronic databases and 4389 were screened. Of these articles, 21 studies that met the eligibility criteria were included in the review. Relevant data were extracted from the included studies. By conducting a quality effect meta-analysis, the pooled prevalence for MDR and ESBL K. pneumoniae in SEA was estimated at 55% (CI 9-96) and 27% (CI 32-100) respectively. The review also identified ESBL genes types of allodemic situations occurring mostly in respiratory tract infections. The high prevalence of MDR and ESBL K. pneumoniae in this subregion is highly significant and of both public health and clinical relevance. Overall, the findings of this review will assist in the effective prevention and control of this threat in SEA.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  13. Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Cleary DW, Clarke SC, et al.
    mSphere, 2021 Jan 27;6(1).
    PMID: 33504662 DOI: 10.1128/mSphere.01076-20
    Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes blaNDM-1 and blaOXA-58 in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The blaNDM-1 gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas blaOXA-58 was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  14. Madaha EL, Mienie C, Gonsu HK, Bughe RN, Fonkoua MC, Mbacham WF, et al.
    PLoS One, 2020;15(9):e0238390.
    PMID: 32886694 DOI: 10.1371/journal.pone.0238390
    Pseudomonas aeruginosa has been implicated in a wide range of post-operation wound and lung infections. A wide range of acquired resistance and virulence markers indicate surviving strategy of P. aeruginosa. Complete-genome analysis has been identified as efficient approach towards understanding the pathogenicity of this organism. This study was designed to sequence the entire genome of P. aeruginosa UY1PSABAL and UY1PSABAL2; determine drug-resistance profiles and virulence factors of the isolates; assess factors that contribute toward stability of the genomes; and thereafter determine evolutionary relationships between the strains and other isolates from similar sources. The genomes of the MDR P. aeruginosa UY1PSABAL and UY1PSABAL2 were sequenced on the Illumina Miseq platform. The raw sequenced reads were assessed for quality using FastQC v.0.11.5 and filtered for low quality reads and adapter regions using Trimmomatic v.0.36. The de novo genome assembly was made with SPAdes v.3.13 and annotated using Prokka v.2.1.1 annotation pipeline; Rapid Annotation using Subsytems Technology (RAST) server v.2.0; and PATRIC annotation tool v.3.6.2. Antimicrobial resistance genes and virulence determinants were searched through the functional annotation data generated from Prokka, RAST and PATRIC annotation pipelines; In addition to ResFinder and Comprehensive Antibiotic Resistance Database (CARD) which were employed to determine resistance genes. The PHAge Search Tool Enhanced Release (PHASTER) web server was used for the rapid identification and annotation of prophage sequences within bacterial genome. Predictive secondary metabolites were identified with AntiSMASH v.5.0. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and cas genes regions were also investigated with the CRISPRone and CRISPRFinder server. The genome sizes of 7.0 and 6.4 Mb were determined for UY1PSABAL and UY1PSABAL2 strains with G+C contents of 66.1% and 66.48% respectively. β-lactamines resistance genes blaPAO, aminoglycoside phosphorylating enzymes genes aph(3')-IIb, fosfomycine resistance gene fosA, vancomycin vanW and tetracycline tetA were among identified resistance genes harboured in both isolates. UY1PSABAL bore additional aph(6)-Id, aph(3'')-Ib, ciprofloxacin-modifying enzyme crpP and ribosomal methylation enzyme rmtB. Both isolates were found harbouring virulence markers such as flagella and type IV pili; and also present various type III secretion systems such as exoA, exoS, exoU, exoT. Secondary metabolites such as pyochelin and pyoverdine with iron uptake activity were found within the genomes as well as quorum-sensing systems, and various fragments for prophages and insertion sequences. Only the UY1PSABAL2 contains CRISPR-Cas system. The phylogeny revealed a very close evolutionary relationship between UY1PSABAL and the similar strain isolated from Malaysia; the same trend was observed between UY1PSABAL2 and the strain from Chinese origin. Complete analyses of the entire genomes provide a wide range of information towards understanding pathogenicity of the pathogens in question.
    Matched MeSH terms: Drug Resistance, Multiple/genetics*
  15. Firdose A, Maeda T, Sukri MAM, Yasin NHM, Sabturani N, Aqma WS
    Microb Pathog, 2024 Aug;193:106743.
    PMID: 38879138 DOI: 10.1016/j.micpath.2024.106743
    Rhamnolipids, a major category of glycolipid biosurfactant, have recently gained enormous attention in medical field because of their relevance as effective antibacterial agents against a wide variety of pathogenic bacteria. Our previous studies have shown that rhamnolipids from an environmental isolate of Pseudomonas aeruginosa UKMP14T possess antibacterial, anti-adhesive and anti-biofilm activity against multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) pathogens. However, the mechanism of their antibacterial action remains unclear. Thus, this study aimed to elucidate the mechanism of the antibacterial action of P. aeruginosa UKMP14T rhamnolipids by studying the changes in cells of one of the ESKAPE pathogens, Acinetobacter baumannii, which is the most difficult strain to kill. Results revealed that rhamnolipid treatment rendered A. baumannii cells more hydrophobic as evaluated through contact angle measurements. It also induced the release of cellular proteins measuring 510 μg/mL at a rhamnolipid concentration of 1000 μg/mL. In addition, rhamnolipids were found to be bactericidal in their action as they could permeate the inner membranes, leading to a leak-out of nucleotides. More than 50 % of the cells were found to be killed upon 1000 μg/mL rhamnolipid treatment as observed through fluorescence microscopy. Other cellular changes such as irregular shape and size, membrane perturbations, clumping, shrinkage and physical damage were clearly visible in SEM, FESEM and laser micrographs. Furthermore, rhamnolipid treatment inhibited the levels of acyl-homoserine lactones (AHLs) in A. baumannii, which are vital for their biofilm formation and virulence. The obtained results indicate that P. aeruginosa UKMP14T rhamnolipids target outer and inner bacterial membranes through permeation, including physical damage to the cells, leading to cell leakage. Furthermore, AHL inhibition appears to be the mechanism behind their anti-biofilm action. All these observations can be correlated to rhamnolipids' antibacterial effect against A. baumannii.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial*
  16. Locarnini S
    Med J Malaysia, 2005 Jul;60 Suppl B:41-51.
    PMID: 16108173
    Matched MeSH terms: Drug Resistance, Multiple, Viral/genetics; Drug Resistance, Multiple, Viral/immunology*
  17. Al-Sunaidar KA, Prof Abd Aziz N, Prof Hassan Y
    Int J Clin Pharm, 2020 Apr;42(2):527-538.
    PMID: 32144611 DOI: 10.1007/s11096-020-01005-4
    Background The appropriateness of antibiotics is the basis for improving the survival of patients with sepsis. Objective This study aimed to determine the appropriateness of empirical antibiotics, reasons for non-appropriate empirical antibiotics, risk factors of mortality, length of stay in intensive care unit (ICU-LOS) and Acute Physiology And Chronic Health Evaluation II (APACHE II) score predictors in adult patients with sepsis. Setting An adult ICU of a tertiary hospital in  Malaysia. Methods A retrospective cohort study was conducted amongst patients with sepsis. Data were retrieved from the patients' files and computer system. Each case was reviewed for the appropriateness of empirical antibiotics based on ICU local guidelines, bacterial sensitivity, dose, frequency, creatinine clearance and time of administration of empirical antibiotics. Multivariable logistic and Cox regression modelling were performed to compute the adjusted association of receiving appropriate or inappropriate empirical antibiotics with ICU mortality. Multivariable linear regression modelling was performed using ICU-LOS and APACHE II scores. Main outcome measures were ICU mortality, severity score (APACHE II scores) and ICU-LOS. Results The total mortality rate amongst the 228 adult ICU patients was 84.6%. Males showed a higher mortality rate (119 [52.2%]) than females (74 [32.5%]). Inappropriate empirical antibiotics were significantly associated with mortality and ICU-LOS (P 
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/drug effects*; Drug Resistance, Multiple, Bacterial/physiology
  18. Khor WC, Puah SM, Koh TH, Tan JAMA, Puthucheary SD, Chua KH
    Microb Drug Resist, 2018 May;24(4):469-478.
    PMID: 29461928 DOI: 10.1089/mdr.2017.0083
    OBJECTIVE: The objective of this study was to examine the species distribution, genetic relatedness, virulence gene profiles, antimicrobial sensitivities, and resistance gene distribution of clinical Aeromonas strains from Singapore and Malaysia.

    METHODS: A total of 210 Aeromonas clinical isolates were investigated: 116 from Singapore General Hospital and 94 archived clinical isolates from University of Malaya Medical Center, Malaysia. The isolates were genetically identified based on the gcat gene screening and the partial sequences of the rpoD housekeeping gene. Genetic relatedness, distribution of 15 virulence genes and 4 beta-lactamase resistance genes, and susceptibility patterns to 11 antimicrobial agents were compared.

    RESULTS: Of the 210 Aeromonas isolates, A. dhakensis-94 (45%) was the dominant species in Singapore and Malaysia. Species composition was similar and enterobacterial repetitive intergenic consensus-PCR did not show genetic relatedness between strains from the two countries. Of the 15 virulence genes, A. dhakensis and A. hydrophila harbored the most compared with other species. Different combinations of 9 virulence genes (exu, fla, lip, eno, alt, dam, hlyA, aexU, and ascV) were present in A. dhakensis, A. hydrophila, and A. veronii from both the countries. Distribution of virulence genes was species and anatomic site related. Majority (>80%) of the strains were susceptible to all antimicrobial agents tested, except amoxicillin and cephalothin. A. dhakensis strains from Malaysia significantly harbored the cphA gene compared with A. dhakensis from Singapore. Multidrug resistance was mostly detected in strains from peritoneal fluids of dialysis patients.

    CONCLUSION: This study revealed A. dhakensis as the dominant species isolated in both geographic regions, and that it carried a high number of virulence genes. It also highlights the geographic-related differences of virulence gene distribution and antimicrobial resistance profiles of clinical Aeromonas strains from Singapore and Malaysia.

    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/drug effects; Drug Resistance, Multiple, Bacterial/genetics
  19. Phoon HYP, Hussin H, Hussain BM, Thong KL
    Microb Drug Resist, 2018 Oct;24(8):1108-1116.
    PMID: 29437541 DOI: 10.1089/mdr.2017.0258
    Pseudomonas aeruginosa infections account for high morbidity and mortality rates worldwide. Increasing resistance toward β-lactams, especially carbapenems, poses a serious therapeutic challenge. However, the multilocus sequence typing (MLST) of extended-spectrum beta lactamase (ESBL)- and carbapenemase-producing clinical P. aeruginosa has not been reported in Malaysia. This study aimed to determine the antibiotic susceptibility profiles, resistance genes, pulsotypes, and sequence types (STs) of clinical P. aeruginosa from a Malaysian tertiary hospital. These characteristics were analyzed by disk diffusion, minimum inhibitory concentration, polymerase chain reaction, pulsed-field gel electrophoresis (PFGE), and MLST for 199 nonreplicate clinical strains. The susceptibility of the strains toward the carbapenems and piperacillin-tazobactam was the lowest (≤90%), while ≥90% of the strains remained susceptible to all other classes of antimicrobial agents tested. The multidrug-resistant strains displayed high level resistance to cephalosporins (48 to ≥256 mg/L) and carbapenems (4-32 mg/L). Eleven strains harbored class 1 integrons containing blaGES-13, blaVIM-2, blaVIM-6, blaOXA-10, aacA(6')-Ib, aacA(6')-II, aadA6, and gcuD gene cassettes. Extra-integron genes, blaGES-20, blaIMP-4, blaVIM-2, and blaVIM-11, were also found. Overall, the maximum likelihood tree showed concordance in the clustering of strains having the same STs and PFGE clusters. ST708 was the predominant antibiotic-susceptible clone detected from the neonatal intensive care unit. The STs 235, 809, and 1076 clonal clusters consisted of multidrug resistant strains. ST235 is a recognized international high-risk clone. This is the first report of blaGES-13 and blaGES-20 ESBL-encoding gene variants and novel STs (STs 2329, 2335, 2337, 2338, 2340, and 2341) of P. aeruginosa in Malaysia.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/drug effects; Drug Resistance, Multiple, Bacterial/genetics
  20. Thong KL, Ang CP
    PMID: 22299444
    Abstract. Salmonella enterica serovar Paratyphi B is known to cause either paratyphoid fever or gastroenteritis. Differentiation of Salmonella ser. Paratyphi B into biotype Java (d-tartrate fermenting, dT+) and biotype Paratyphi B (d-tartrate non-fermenting, dT) is important for Salmonella epidemiology. This study applied a PCR approach to differentiate the two biotypes to augment the conventional biochemical method and to determine the antibiograms and genomic diversity of Malaysian S. Paratyphi B. Among 100 strains tested (clinical, 86; non-humans, 14), only two clinical strains were confirmed as biotype Paratyphi B as indicated by both lead acetate test and PCR. Antibiotic resistance rates were as follows: streptomycin 18%, sulphonamides 13%, ampicillin 10%, chloramphenicol 4%, tetracycline 3%, cefotaxime 2%, cefpodoxime 2%, ceftazidime 2%, gentamicin 1% and trimethoprim 1%. None showed resistance towards amoxicillin-clavulanic acid, ceftiofur, ciprofloxacin, nalidixic acid and trimethoprim-sulphamethoxazole. Seven strains showed multidrug resistance towards 3 or more classes of antimicrobial agents. REP-PCR and PFGE generated 32 and 76 different profiles, respectively. PFGE (D = 0.99) was more discriminative than REP-PCR (D = 0.93) and antimicrobial susceptibility test (D = 0.48) in subtyping the strains. Strains isolated 18 years apart (1982 - 2008) from different localities in Malaysia were clonally related as demonstrated by REP-PCR and PFGE, indicating that these strains were stable and widely distributed. In some clusters, strains isolated from different sources (clinical, food and animal) were grouped together. Thus, biotype Java was the most common biotype of Salmonella ser. Paratyphi B in Malaysia. The PCR approach is highly recommended due to its simplicity, specificity and ease of operation. The level of antimicrobial resistance among Salmonella ser. Paratyphi B remained relatively low in Malaysia but the emergence of resistance to cephalosporins is a cause for concern.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/drug effects; Drug Resistance, Multiple, Bacterial/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links