Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Zain RM, Ibrahim N, Ismail S, Suppiah J, Mat Rahim NA, Thayan R
    Asian Pac J Trop Med, 2017 Jan;10(1):75-78.
    PMID: 28107870 DOI: 10.1016/j.apjtm.2016.12.005
    OBJECTIVE: To determine drug resistance mutations and the HIV-1 subtypes among antiretroviral treatment naive HIV-1 patients in Peninsular Malaysia.

    METHODS: A total of 45 samples from four hospitals that provide HIV viral load services were subjected to the amplification of the protease and two third of reverse transcriptase regions of the pol gene by RT-PCR and Sanger sequencing. Drug resistance mutation (DRM) interpretation reports the presence of mutations related to protease inhibitors (PIs), Nucleoside reverse-transcriptase inhibitors (NRTI) and Non-nucleoside reverse-transcriptase inhibitors (NNRTI) based on analysis using Stanford HIV database program.

    RESULTS: DRMs were identified in 35% of patients, among which 46.7% of them showed minor resistance to protease inhibitor with A71V and L10l were the commonest DRMs detected. About 21.4% and 50.0% of patients had mutations to NRTIs and NNRTIs, respectively. CRF01_AE was found to be the predominant HIV-1 subtype.

    CONCLUSIONS: These findings have served as an initial crucial data in determining the prevalence of transmitted HIV-1 drug resistance for the country. However, more samples from various parts of the country need to be accumulated and analyzed to provide overall HIV-1 drug resistance in the country.

    Matched MeSH terms: DNA-Directed RNA Polymerases
  2. Ong CS, Ngeow YF, Yap SF, Tay ST
    J Med Microbiol, 2010 Nov;59(Pt 11):1311-1316.
    PMID: 20688949 DOI: 10.1099/jmm.0.021139-0
    In this study, PCR-RFLP analysis (PRA) targeting hsp65 and rpoB gene regions was evaluated for the identification of mycobacterial species isolated from Malaysian patients. Overall, the hsp65 PRA identified 92.2 % of 90 isolates compared to 85.6 % by the rpoB PRA. With 47 rapidly growing species, the hsp65 PRA identified fewer (89.4 %) species than the rpoB PRA (95.7 %), but with 23 slow-growing species the reverse was true (91.3 % identification by the hsp65 PRA but only 52.5 % by the rpoB PRA). There were 16 isolates with discordant PRA results, which were resolved by 16S rRNA and hsp65 gene sequence analysis. The findings in this study suggest that the hsp65 PRA is more useful than the rpoB PRA for the identification of Mycobacterium species, particularly with the slow-growing members of the genus. In addition, this study reports 5 and 12 novel restriction patterns for inclusion in the hsp65 and rpoB PRA algorithms, respectively.
    Matched MeSH terms: DNA-Directed RNA Polymerases/genetics*
  3. Biglari S, Alfizah H, Ramliza R, Rahman MM
    J Med Microbiol, 2015 Jan;64(Pt 1):53-8.
    PMID: 25381148 DOI: 10.1099/jmm.0.082263-0
    Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
    Matched MeSH terms: DNA-Directed RNA Polymerases/genetics
  4. He PY, Yip WK, Jabar MF, Mohtarrudin N, Dusa NM, Seow HF
    Oncol Lett, 2019 Aug;18(2):1949-1960.
    PMID: 31423265 DOI: 10.3892/ol.2019.10492
    The objectives of the present study were to identify the aberrant expression of microRNA (miRNA) in colorectal carcinoma (CRC) tissues from published miRNA profiling studies and to investigate the effects of the identified miRNA inhibitor and mimic miR-96-5p on CRC cell migration and invasion. The altered expression of the regulators of cytoskeleton mRNA in miR-96-5p inhibitor-transfected cells was determined. The miR-96-5p expression level in five CRC cell lines, HCT11, CaCo2, HT29, SW480 and SW620, and 26 archived paraffin-embedded CRC tissues were also investigated by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). Cell viability in response to the miR-96-5p inhibitor and mimic transfections was determined by an MTT assay. A Matrigel invasion assay was conducted to select the invasive subpopulation designated SW480-7, by using the parental cell line SW480. The effects of miR-96-5p mimic- or inhibitor-transfected SW480-7 cells on cell migration and invasion were evaluated using the Transwell and Matrigel assays, and the change in expression of the regulators of cytoskeleton mRNAs was identified by Cytoskeleton Regulators RT2-Profiler PCR array followed by validation with RT-qPCR. CRC tissues exhibited a significant increase in miR-96-5p expression, compared with their matched normal adjacent tissues, indicating an oncogenic role for miR-96-5p. The results demonstrated that the miR-96-5p inhibitor decreased the migration of SW480-7 cells, but had no effect on invasion. This may be due to the promotion of cell invasion by Matrigel, which counteracts the blockade of cell invasion by the miR-96-5p inhibitor. The miR-96-5p mimic enhanced SW480-7 cell migration and invasion, as expected. It was determined that there was a >2.5 fold increase in the expression of genes involved in cytoskeleton regulation, myosin light chain kinase 2, pleckstrin homology like domain family B member 2, cyclin A1, IQ motif containing GTPase activating protein 2, Brain-specific angiogenesisinhibitor 1-associated protein 2 and microtubule-actin crosslinking factor 1, in miR-96-5p inhibitor-transfected cells, indicating that they are negative regulators of cell migration. In conclusion, the miR-96-5p inhibitor blocked cell migration but not invasion, and the latter may be due to the counteraction of Matrigel, which has been demonstrated to stimulate cell invasion.
    Matched MeSH terms: DNA-Directed RNA Polymerases
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links