Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Tan SN, Sim SP, Khoo AS
    Hum Genomics, 2018 06 18;12(1):29.
    PMID: 29914565 DOI: 10.1186/s40246-018-0160-8
    BACKGROUND: The mechanism underlying chromosome rearrangement in nasopharyngeal carcinoma (NPC) remains elusive. It is known that most of the aetiological factors of NPC trigger oxidative stress. Oxidative stress is a potent apoptotic inducer. During apoptosis, chromatin cleavage and DNA fragmentation occur. However, cells may undergo DNA repair and survive apoptosis. Non-homologous end joining (NHEJ) pathway has been known as the primary DNA repair system in human cells. The NHEJ process may repair DNA ends without any homology, although region of microhomology (a few nucleotides) is usually utilised by this DNA repair system. Cells that evade apoptosis via erroneous DNA repair may carry chromosomal aberration. Apoptotic nuclease was found to be associated with nuclear matrix during apoptosis. Matrix association region/scaffold attachment region (MAR/SAR) is the binding site of the chromosomal DNA loop structure to the nuclear matrix. When apoptotic nuclease is associated with nuclear matrix during apoptosis, it potentially cleaves at MAR/SAR. Cells that survive apoptosis via compromised DNA repair may carry chromosome rearrangement contributing to NPC tumourigenesis. The Abelson murine leukaemia (ABL) gene at 9q34 was targeted in this study as 9q34 is a common region of loss in NPC. This study aimed to identify the chromosome breakages and/or rearrangements in the ABL gene in cells undergoing oxidative stress-induced apoptosis.

    RESULTS: In the present study, in silico prediction of MAR/SAR was performed in the ABL gene. More than 80% of the predicted MAR/SAR sites are closely associated with previously reported patient breakpoint cluster regions (BCR). By using inverse polymerase chain reaction (IPCR), we demonstrated that hydrogen peroxide (H2O2)-induced apoptosis in normal nasopharyngeal epithelial and NPC cells led to chromosomal breakages within the ABL BCR that contains a MAR/SAR. Intriguingly, we detected two translocations in H2O2-treated cells. Region of microhomology was found at the translocation junctions. This observation is consistent with the operation of microhomology-mediated NHEJ.

    CONCLUSIONS: Our findings suggested that oxidative stress-induced apoptosis may participate in chromosome rearrangements of NPC. A revised model for oxidative stress-induced apoptosis mediating chromosome rearrangement in NPC is proposed.

    Matched MeSH terms: DNA Repair/genetics
  2. Tang IP, Shashinder S, Kuljit S, Gopala KG
    Med J Malaysia, 2007 Mar;62(1):53-5.
    PMID: 17682572
    We reviewed the recurrence rate and possible factors influencing recurrence of preauricular sinus after excision. Seventy-one patients with 73 preauricular sinuses seen at our centre from year 2000 to 2005 were reviewed in this study. The overall recurrence rate was 14.1%. Twelve sinuses needed to be drained for an abscess prior to a definitive surgery. Different modalities used in demonstrating the sinus tract between methylene blue alone and probing together with methylene blue, showed different outcomes, which were statistically significant with a p value of < 0.05(chi-square test). A preauricular sinus with a previous history of infection or actively infected during the definitive surgery may have a higher tendency of recurrence. Meanwhile demonstrating the sinus tract by probing with lacrimal probe/sinus probe followed by injection of methylene blue reduces the recurrence rate (p < 0.05 with chi-square test).
    Matched MeSH terms: DNA Repair
  3. Khor, Chai Wey, Ahmad Azlina, Ponnuraj, Kannan Thirumulu, Noor Hayati Abdul Razak
    MyJurnal
    Xeroderma pigmentosum-D (XPD) is one of the genes that play a role in the Nucleotide-Excision Repair (NER). Polymorphisms in XPD gene have been identified and reported to be associated with many types of cancer with two common single nucleotide polymorphisms (SNPs), namely, XPD312 and XPD751. The XPD312 polymorphism is at exon 10 codon 312 Asp to Asn (A→G) and the association of this polymorphism with oral cancer is very little known, especially, in Malaysia. The aim of this study was to screen for XPD312 gene polymorphisms in human oral cancer patients attending Hospital Universiti Sains Malaysia (HUSM), Malaysia. Blood samples were collected from 10 oral cancer and 10 normal healthy subjects with their consent. DNA was extracted using commercial DNA extraction kit and Polymerase Chain Reaction (PCR) was performed to amplify the XPD312 gene. The PCR products were digested using restriction enzyme, Sty I and analyzed on a 3% agarose gel for the detection of polymorphisms. This was followed by DNA sequencing to confirm the findings. In the current study, only homozygous wild type polymorphisms in the XPD312 gene was noticed in the oral cancer tissues as revealed by the restriction enzyme and DNA sequencing analyses.
    Matched MeSH terms: DNA Repair
  4. Chi KN, Sandhu S, Smith MR, Attard G, Saad M, Olmos D, et al.
    Ann Oncol, 2023 Sep;34(9):772-782.
    PMID: 37399894 DOI: 10.1016/j.annonc.2023.06.009
    BACKGROUND: Patients with metastatic castration-resistant prostate cancer (mCRPC) and BRCA alterations have poor outcomes. MAGNITUDE found patients with homologous recombination repair gene alterations (HRR+), particularly BRCA1/2, benefit from first-line therapy with niraparib plus abiraterone acetate and prednisone (AAP). Here we report longer follow-up from the second prespecified interim analysis (IA2).

    PATIENTS AND METHODS: Patients with mCRPC were prospectively identified as HRR+ with/without BRCA1/2 alterations and randomized 1 : 1 to niraparib (200 mg orally) plus AAP (1000 mg/10 mg orally) or placebo plus AAP. At IA2, secondary endpoints [time to symptomatic progression, time to initiation of cytotoxic chemotherapy, overall survival (OS)] were assessed.

    RESULTS: Overall, 212 HRR+ patients received niraparib plus AAP (BRCA1/2 subgroup, n = 113). At IA2 with 24.8 months of median follow-up in the BRCA1/2 subgroup, niraparib plus AAP significantly prolonged radiographic progression-free survival {rPFS; blinded independent central review; median rPFS 19.5 versus 10.9 months; hazard ratio (HR) = 0.55 [95% confidence interval (CI) 0.39-0.78]; nominal P = 0.0007} consistent with the first prespecified interim analysis. rPFS was also prolonged in the total HRR+ population [HR = 0.76 (95% CI 0.60-0.97); nominal P = 0.0280; median follow-up 26.8 months]. Improvements in time to symptomatic progression and time to initiation of cytotoxic chemotherapy were observed with niraparib plus AAP. In the BRCA1/2 subgroup, the analysis of OS with niraparib plus AAP demonstrated an HR of 0.88 (95% CI 0.58-1.34; nominal P = 0.5505); the prespecified inverse probability censoring weighting analysis of OS, accounting for imbalances in subsequent use of poly adenosine diphosphate-ribose polymerase inhibitors and other life-prolonging therapies, demonstrated an HR of 0.54 (95% CI 0.33-0.90; nominal P = 0.0181). No new safety signals were observed.

    CONCLUSIONS: MAGNITUDE, enrolling the largest BRCA1/2 cohort in first-line mCRPC to date, demonstrated improved rPFS and other clinically relevant outcomes with niraparib plus AAP in patients with BRCA1/2-altered mCRPC, emphasizing the importance of identifying this molecular subset of patients.

    Matched MeSH terms: Recombinational DNA Repair
  5. Cheah PL, Looi LM, Teoh KH, Rahman NA, Wong LX, Tan SY
    Asian Pac J Cancer Prev, 2014;15(7):3287-91.
    PMID: 24815484
    BACKGROUND: The interesting preponderance of Chinese with colorectal carcinoma (CRC) amongst the three major ethnic groups in Malaysia prompted a study to determine DNA mismatch repair (MMR) status in our CRC and attempt correlation with patient age, gender and ethnicity as well as location, grade, histological type and stage of tumour. Histologically re-confirmed CRC, diagnosed between 1st January 2005 and 31st December 2007 at the Department of Pathology, University of Malaya Medical Centre, were immunohistochemically stained with monoclonal antibodies to MMR proteins, MLH1, MSH2, MSH6 and PMS2 on the Ventana Benchmark XT autostainer. Of the 142 CRC cases entered into the study, there were 82 males and 60 females (M:F=1.4:1). Ethnically, 81 (57.0%) were Chinese, 32 (22.5%) Malays and 29 (20.4%) Indians. The patient ages ranged between 15-87 years (mean=62.4 years) with 21 cases <50-years and 121 ≥50-years of age. 14 (9.9%) CRC showed deficient MMR (dMMR). Concurrent loss of MLH1 and PMS2 occurred in 10, MSH2 and MSH6 in 2 with isolated loss of MSH6 in 1 and PMS2 in 1. dMMR was noted less frequently amongst the Chinese (6.2%) in comparison with their combined Malay and Indian counterparts (14.8%), and was associated with right sided and poorly differentiated tumours (p<0.05). 3 of the 5 (60.0%) dMMR CRC cases amongst the Chinese and 1 of 9 cases (11.1%) amongst the combined Malay and Indian group were <50-years of age. No significant association of dMMR was noted with patient age and gender, tumour stage or mucinous type.
    Matched MeSH terms: DNA Repair Enzymes/genetics
  6. Wan Juhari WK, Wan Abdul Rahman WF, Mohd Sidek AS, Abu Hassan MR, Ahmad Amin Noordin KB, Zakaria AD, et al.
    Asian Pac J Cancer Prev, 2015;16(9):3767-71.
    PMID: 25987035
    BACKGROUND: Lynch syndrome (LS) is an inherited predisposition to colorectal, endometrial (uterine) and other cancers. Although most cancers are not inherited, about 5 percent (%) of people who have colorectal or endometrial cancer have the Lynch syndrome. It involves the alteration of mismatch repair (MMR) genes; MLH1, MSH2, MSH6 or PMS2. In this study, we analyzed the expression of MMR proteins in colorectal cancer in a Malay cohort by immunohistochemistry.

    MATERIALS AND METHODS: A total of 17 patients were selected fulfilling one of the Bethesda criteria: colorectal cancer diagnosed in a patient aged less than 50 years old, having synchronous and metachronous colorectal cancer or with a strong family history. Immunohistochemical staining was performed on paraffin embedded tumour tissue samples using four antibodies: MLH1, MSH2, MSH6 and PMS2.

    RESULTS: Twelve out of 17 patients (70.6%) were noted to have a family history. A total of 41% (n=7) of the patients had abnormal immunohistochemical staining with one or more of the four antibodies. Loss of expression were noted in 13 tumour tissues with a negative staining score <4. Of 13 tumour tissues, four showed loss expression of MLH1. For PMS2, loss of expression were noted in five cases. Both MSH2 and MSH6 showed loss of expression in two tumour tissues respectively.

    CONCLUSIONS: Revised Bethesda criteria and immunohistochemical analysis constituted a convenient approach and is recommended to be a first-line screening for Lynch syndrome in Malay cohorts.

    Matched MeSH terms: DNA Repair Enzymes/metabolism*
  7. Farhana A, Koh AE, Tong JB, Alsrhani A, Kumar Subbiah S, Mok PL
    Molecules, 2021 Sep 06;26(17).
    PMID: 34500845 DOI: 10.3390/molecules26175414
    Molecular crosstalk between the cellular epigenome and genome converge as a synergistic driver of oncogenic transformations. Besides other pathways, epigenetic regulatory circuits exert their effect towards cancer progression through the induction of DNA repair deficiencies. We explored this mechanism using a camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF)-treated HT29 cells model. We previously demonstrated that CPT-CEF treatment of HT29 cells effectively induces apoptosis and cell cycle arrest, stalling cancer progression. A comparative transcriptome analysis of CPT-CEF-treated versus untreated HT29 cells indicated that genes controlling mismatch repair, base excision repair, and homologues recombination were downregulated in these cancer cells. Our study demonstrated that treatment with CPT-CEF alleviated this repression. We observed that CPT-CEF exerts its effect by possibly affecting the DNA repair mechanism through epigenetic modulation involving genes of HMGB1, APEX1, and POLE3. Hence, we propose that CPT-CEF could be a DNA repair modulator that harnesses the cell's epigenomic plasticity to amend DNA repair deficiencies in cancer cells.
    Matched MeSH terms: DNA Repair/drug effects*
  8. Kaur G, Masoud A, Raihan N, Radzi M, Khamizar W, Kam LS
    Indian J Med Res, 2011 Aug;134:186-92.
    PMID: 21911971
    DNA mismatch repair gene (MMR) abnormalities are seen in 95 per cent of hereditary nonpolyposis colorectal cancer (HNPCC) and 10-15 per cent of sporadic colorectal cancers. There are no data on MMR abnormalities in Malaysian colorectal cancer patients. This study was aimed to determine the frequency of abnormal MMR gene protein expression in colorectal carcinoma in Northern Peninsular Malaysia using immunohistochemistry.
    Matched MeSH terms: DNA Repair Enzymes/metabolism*
  9. Visuvanathan S, Chong PP, Yap YY, Lim CC, Tan MK, Lye MS
    Asian Pac J Cancer Prev, 2014;15(6):2747-51.
    PMID: 24761895
    BACKGROUND: DNA repair pathways play a crucial role in maintaining the human genome. Previous studies associated DNA repair gene polymorphisms (XPD Lys751Gln, XRCC1 Arg280His and XRCC1 Arg399Gln) with nasopharyngeal carcinoma. These non-synonymous polymorphisms may alter DNA repair capacity and thus increase or decrease susceptibility. The present study aimed to determine the genotype distribution of XPD codon 751, XRCC1 codon 280 and codon 399 polymorphisms and haplotype associations among NPC cases and controls in the Malaysian population.

    MATERIALS AND METHODS: We selected 157 NPC cases and 136 controls from two hospitals in Kuala Lumpur, Malaysia for this study. The polymorphisms studied were genotyped by PCR-RFLP assay and allele and genotype frequencies, haplotype and linkage disequilibrium were determined using SNPstat software.

    RESULTS: For the XPD Lys751Gln polymorphism, the frequency of the Lys allele was higher in cases than in controls (94.5% versus 85.0%). For the XRCC1 Arg280His polymorphism, the frequency of Arg allele was 90.0% and 89.0% in cases and controls, respectively and for XRCC1 Arg399Gln the frequency of the Arg allele was 72.0% and 72.8% in cases and controls respectively. All three polymorphisms were in linkage disequilibrium. The odds ratio from haplotype analysis for these three polymorphisms and their association with NPC was 1.93 (95%CI: 0.90-4.16) for haplotype CGC vs AGC allele combinations. The global haplotype association with NPC gave a p-value of 0.054.

    CONCLUSIONS: Our study provides an estimate of allele and genotype frequencies of XRCC1Arg280His, XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms in the Malaysian population and showed no association with nasopharyngeal cancer.

    Matched MeSH terms: DNA Repair
  10. Smn Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I
    Oxid Med Cell Longev, 2017;2017:3708048.
    PMID: 28337249 DOI: 10.1155/2017/3708048
    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
    Matched MeSH terms: DNA Repair Enzymes/genetics; DNA Repair Enzymes/metabolism
  11. Goh KM, Gan HM, Chan KG, Chan GF, Shahar S, Chong CS, et al.
    PLoS One, 2014;9(6):e90549.
    PMID: 24603481 DOI: 10.1371/journal.pone.0090549
    Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. Based on the genome analysis using SEED, many of the annotated sequences are involved in carbohydrate metabolism. The presence of glycosyl hydrolases among the Anoxybacillus spp. was compared, and the potential applications of these unexplored enzymes are suggested here. This is the first study that compares Anoxybacillus genomes from the aspect of lifestyle adaptations, the capacity for horizontal gene transfer, and carbohydrate metabolism.
    Matched MeSH terms: DNA Repair
  12. Kobayashi A, Autsavapromporn N, Ahmad TAFT, Oikawa M, Homma-Takeda S, Furusawa Y, et al.
    Radiat Prot Dosimetry, 2019 May 01;183(1-2):142-146.
    PMID: 30535060 DOI: 10.1093/rpd/ncy249
    Bi-directional signaling involved in radiation-induced bystander effect (RIBE) between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to radiation cancer therapy. Using the SPICE-NIRS microbeam, we delivered 500 protons to A549-GFP lung carcinoma cells, stably expressing H2B-GFP, which were co-cultured with normal WI-38 cells. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured up to 24-h post-irradiation in both targeted and bystander cells. As a result, inhibition of gap junction intercellular communication (GJIC) attenuated DSB repair in targeted A549-GFP cells, and suppressed RIBE in bystander WI-38 cells but not in distant A549-GFP cells. This suggests that GJIC plays a two-way role through propagating DNA damage effect between carcinoma to normal cells and reversing the bystander signaling, also called 'rescue effect' from bystander cells to irradiated cells, to enhance the DSB repair in targeted cells.
    Matched MeSH terms: DNA Repair
  13. Yap E, Norziha ZA, Simbun A, Tumian NR, Cheong SK, Leong CF, et al.
    Leuk. Res., 2017 08;59:32-40.
    PMID: 28544907 DOI: 10.1016/j.leukres.2017.05.015
    Chronic myeloid leukemia (CML) patients who do not achieve landmark responses following treatment with imatinib mesylate (IM) are considered IM-resistant. Although IM-resistance can be due to BCR-ABL kinase domain (KD) mutations, many IM-resistant patients do not have detectable BCR-ABL KD mutations. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression. To investigate the role of miRNAs in IM-resistance, we recruited 8 chronic phase CML patients with IM-resistance who tested negative for BCR-ABL KD mutations and 2 healthy normal controls. Using miRNA sequencing, we identified 54 differentially expressed miRNAs; 43 of them downregulated. The 3 most differentially downregulated miRNAs were miR-146a-5p, miR-99b-5p and miR-151a-5p. Using real-time quantitative reverse transcriptase-polymerase chain reaction, the expression patterns of the 3 miRNAs were validated on the same cohort of 8 patients in addition to 3 other IM-resistant CML patients. In-silico analysis showed that the predicted gene targets are ATRIP, ATR, WDR48, RAD51C and FANCA genes which are involved in the Fanconi Anemia/BRCA pathway. This pathway regulates DNA damage response (DDR) and influences disease response to chemotherapy. Thus it is conceivable that DDR constitutes a key component in IM-resistance. Further research is needed to elucidate miRNA modulation of the predicted gene targets.
    Matched MeSH terms: DNA Repair
  14. Soo JS, Ng CH, Tan SH, Malik RA, Teh YC, Tan BS, et al.
    Apoptosis, 2015 Oct;20(10):1373-87.
    PMID: 26276035 DOI: 10.1007/s10495-015-1158-5
    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.
    Matched MeSH terms: DNA Repair/drug effects*
  15. Gill MR, Harun SN, Halder S, Boghozian RA, Ramadan K, Ahmad H, et al.
    Sci Rep, 2016 08 25;6:31973.
    PMID: 27558808 DOI: 10.1038/srep31973
    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
    Matched MeSH terms: DNA Repair/drug effects
  16. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat Genet, 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
    Matched MeSH terms: DNA Repair/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links