Displaying publications 21 - 40 of 119 in total

Abstract:
Sort:
  1. Akter R, Vythilingam I, Khaw LT, Qvist R, Lim YA, Sitam FT, et al.
    Malar J, 2015 Oct 05;14:386.
    PMID: 26437652 DOI: 10.1186/s12936-015-0856-3
    BACKGROUND: Malaria is a vector-borne parasitic disease which is prevalent in many developing countries. Recently, it has been found that Plasmodium knowlesi, a simian malaria parasite can be life-threatening to humans. Long-tailed macaques, which are widely distributed in Malaysia, are the natural hosts for simian malaria, including P. knowlesi. The aim of the present study was to determine the prevalence of simian malaria parasites in long-tailed macaques in the district of Hulu Selangor, Selangor, Malaysia.

    METHODS: A total of 70 blood samples were collected from Macaca fascicularis dwelling in the forest of Hulu Selangor by the Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia. DNA was extracted using PureLink™ Genomic DNA Kits. Conventional and nested PCR were used to detect the genus and species of Plasmodium parasites respectively. In addition, phylogenetic analysis was carried out to confirm the species of Plasmodium parasites.

    RESULTS: Thirty-five (50 %) of the 70 samples were positive for Plasmodium using genus-specific primers. These positive samples were then subjected to nested PCR targeting the 18S ribosomal RNA genes to detect all five simian malaria parasites: namely, P. knowlesi, Plasmodium inui, Plasmodium cynomolgi, Plasmodium fieldi, and Plasmodium coatneyi. All five species of simian malaria parasites were detected. Of these, P. inui was the predominant (65.7 %), followed by P. knowlesi (60 %), P. cynomolgi (51.4 %) P. coatneyi (45.7 %) and P. fieldi (2.9 %). A total of nine macaques had mono-infection with P. knowlesi (four), P. cynomolgi (two), P. coatneyi (two) and P. fieldi (one). Eleven of the macaques had dual infections while 12 had triple infections. Three macaques were infected with four species of Plasmodium. Molecular and phylogenetic analysis confirmed the five species of Plasmodium parasites.

    CONCLUSION: This study has provided evidence to elucidate the presence of transmission of malaria parasites among the local macaques in Hulu Selangor. Since malaria is a zoonosis, it is important to determine the new control strategies for the control of malaria.

    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/isolation & purification; DNA, Protozoan/chemistry
  2. Chandrasekaran H, Govind SK, Panchadcharam C, Bathmanaban P, Raman K, Thergarajan G
    Parasit Vectors, 2014;7:469.
    PMID: 25358755 DOI: 10.1186/s13071-014-0469-7
    Blastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.
    Matched MeSH terms: DNA, Protozoan/genetics
  3. Lau YL, Chang PY, Tan CT, Fong MY, Mahmud R, Wong KT
    Am J Trop Med Hyg, 2014 Feb;90(2):361-4.
    PMID: 24420776 DOI: 10.4269/ajtmh.12-0678
    Sarcocystis nesbitti is an intracellular protozoan parasite found as sarcocysts within muscle fibers of intermediate hosts (monkey and baboon). The definitive host is suspected to be the snake. We report two cases from a larger cohort of 89 patients who had fever, headache, and generalized myalgia after a trip to Pangkor Island, Malaysia. Sarcocysts were detected in skeletal muscle biopsy specimens by light and electron microscopy from these two patients. DNA sequencing based on the 18S ribosomal DNA region identified the Sarcocystis species as S. nesbitti. We also identified S. nesbitti sequences in the stools of a snake (Naja naja). Phylogenetic analysis showed that these sequences form a cluster with most of the other known Sarcocystis species for which the snake is a definitive host. We believe these two patients were likely to have symptomatic acute muscular sarcocystosis after S. nesbitti infection that may have originated from snakes.
    Matched MeSH terms: DNA, Protozoan/genetics
  4. Lau YL, Chang PY, Subramaniam V, Ng YH, Mahmud R, Ahmad AF, et al.
    Parasit Vectors, 2013 Sep 09;6(1):257.
    PMID: 24010903 DOI: 10.1186/1756-3305-6-257
    BACKGROUND: Sarcocystis species are protozoan parasites with a wide host range including snakes. Although there were several reports of Sarcocytis species in snakes, their distribution and prevalence are still not fully explored.

    METHODS: In this study, fecal specimens of several snake species in Malaysia were examined for the presence of Sarcocystis by PCR of 18S rDNA sequence. Microscopy examination of the fecal specimens for sporocysts was not carried as it was difficult to determine the species of the infecting Sarcocystis.

    RESULTS: Of the 28 snake fecal specimens, 7 were positive by PCR. BLASTn and phylogenetic analyses of the amplified 18S rDNA sequences revealed the snakes were infected with either S. nesbitti, S. singaporensis, S. zuoi or undefined Sarcocystis species.

    CONCLUSION: This study is the first to report Sarcocystis infection in a cobra, and S. nesbitti in a reticulated python.

    Matched MeSH terms: DNA, Protozoan/genetics
  5. Syed-Hussain SS, Howe L, Pomroy WE, West DM, Smith SL, Williamson NB
    Vet Parasitol, 2013 Nov 8;197(3-4):534-42.
    PMID: 23819894 DOI: 10.1016/j.vetpar.2013.06.002
    Recent reports from New Zealand indicate Neospora caninum has a possible role in causing abortions in sheep. Transmission of N. caninum via semen has been documented in cattle. This study aimed to investigate if horizontal transmission through semen was also possible in sheep. Initially, 6-month old crossbred ram lambs (n=32), seronegative to N. caninum, were divided into 4 equal groups. Group 1 remained uninoculated whilst the remainder were inoculated with N. caninum tachyzoites intravenously as follows: Group 2 - 50 tachyzoites; Group 3 - 10(3) tachyzoites; Group 4 - 10(7) tachyzoites. Semen samples were collected weekly for 8 weeks for the detection of N. caninum DNA and quantified using quantitative PCR (qPCR). Plasma collected 1 month post-inoculation was subjected to ELISA (IDEXX Chekit) and Western blot. At 2 weeks post-infection, three rams from Group 1 (uninoculated) and three rams from Group 4 (10(7)tachyzoites/ml) were mated with two groups of 16 ewes over two oestrus cycles. Ewe sera collected 1 and 2 months post-mating were tested for seroconversion by ELISA and Western blot. All experimentally infected rams seroconverted by 1 month with ELISA S/P% values ranging from 11% to 36.5% in Group 2, 12-39.5% in Group 3 and 40-81% in Group 4. However, none of the ewes mated with the experimentally infected rams seroconverted. For the Western blot, responses towards immunodominant antigens (IDAs) were observed in ram sera directed against proteins at 10, 17, 21, 25-29, 30, 31, 33 and 37 kDa. Rams in Group 2, 3 and 4 were noted to have at least 3 IDAs present. None of the ewes showed any of the 8 prominent IDAs except for the one at 21 kDa which was seen in 30 out of 32 ewes in both groups. N. caninum DNA was detected intermittently in the ram's semen up to 5 weeks post-inoculation with the concentrations ranging from that equivalent to 1-889 tachyzoites per ml of semen. Low concentrations of N. caninum DNA were also detected in the brain tissue of two rams (Groups 1 and 4). These results suggest that although N. caninum DNA can be found in the semen of experimentally infected rams, the transmission of N. caninum via natural mating is an unlikely event.
    Matched MeSH terms: DNA, Protozoan/isolation & purification*
  6. Anuar TS, Al-Mekhlafi HM, Ghani MK, Azreen SN, Salleh FM, Ghazali N, et al.
    Parasitology, 2012 Oct;139(12):1521-5.
    PMID: 22939193 DOI: 10.1017/S0031182012001485
    Entamoeba moshkovskii and Entamoeba dispar are microscopically indistinguishable from the pathogenic species Entamoeba histolytica. Although sporadic cases of human infection with E. moshkovskii have been reported, the amoeba is still considered primarily as a free-living amoeba. A cross-sectional study was carried out among Orang Asli communities in 3 different states of Peninsular Malaysia. Fecal samples were examined by formalin-ether sedimentation and trichrome staining techniques and then single-round PCR assay was used to detect E. moshkovskii. Out of 500 fecal samples examined microscopically, 93 (18·6%) samples were positive for E. histolytica/E. dispar/E. moshkovskii complex cysts and/or trophozoites. PCR products were detected in 106 fecal samples. E. moshkovskii isolates were detected in 13 (12·3%) fecal samples. Of the 13 E. moshkovskii-positive samples, 5 were of single isolation of E. moshkovskii, 6 were also positive for E. dispar, and only 2 samples were positive for E. dispar and E. histolytica. Moreover, 3 E. moshkovskii-positive samples were collected from symptomatic individuals while the remaining 10 samples were from asymptomatic subjects. This is the first report on the identification of E. moshkovskii in Malaysia. Further studies are needed to confirm the pathogenicity of E. moshkovskii infection and determine the epidemiology among Orang Asli communities in Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics
  7. Iqbal A, Lim YA, Surin J, Sim BL
    PLoS One, 2012;7(2):e31139.
    PMID: 22347442 DOI: 10.1371/journal.pone.0031139
    Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.
    Matched MeSH terms: DNA, Protozoan/genetics*
  8. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA
    Am J Trop Med Hyg, 1999 Apr;60(4):687-92.
    PMID: 10348249
    A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
    Matched MeSH terms: DNA, Protozoan/analysis
  9. Chansiri K, Kawazu S, Kamio T, Terada Y, Fujisaki K, Philippe H, et al.
    Vet Parasitol, 1999 Jun 15;83(2):99-105.
    PMID: 10392966
    Classification of Theileria parasites of south-east Asian countries is still ambiguous due to the lack of basic studies, especially their molecular genetic information. In this study, we included 6 known species and 14 unclassified Theileria parasite isolates: Theileria annulata, Theileria parva, Theileria taurotragi, Theileria sergenti, Theileria buffeli, Theileria types Sable, Theileria types A, B, B1, B2, C, D, E, F, G, G1, Theileria type Medan (Indonesia), Theileria type Ipoh (Malaysia) and Theileria type Thong Song (Thailand). Small subunit ribosomal RNA (srRNA) nucleotide sequence data were collected by PCR, cloning and dideoxy sequencing. The srRNA nucleotide sequences were aligned and analyzed by distance methods, maximum parsimony algorithms and maximum likelihood methods to construct phylogenetic trees. Bootstrap analysis was used to test the strength of the different phylogenetic reconstructions. The data indicated that all of the tree-building methods gave very similar results. This study identified two groups of Theileria, the pathogenic and benign groups, which are strongly supported by bootstrap analysis. The analysis also indicated that three subgroups (A, B and C) were generated within the benign Theileria group whereas the classification of Theileria type D and Thong Song is questionable. However, more basic information such as life cycle differences, vectors, modes of transmission, virulent and genetic/sexual compatability is essential for clearer taxonomic definition of the benign Theileria parasites.
    Matched MeSH terms: DNA, Protozoan/chemistry
  10. Singh B, Cox-Singh J, Miller AO, Abdullah MS, Snounou G, Rahman HA
    Trans R Soc Trop Med Hyg, 1996 9 1;90(5):519-21.
    PMID: 8944260
    A modified nested polymerase chain reaction (PCR) method for detection of Plasmodium falciparum, P. vivax and P. malariae was combined with a simple blood collection and deoxyribonucleic acid (DNA) extraction method and evaluated in Malaysia. Finger-prick blood samples from 46 hospital patients and 120 individuals living in malaria endemic areas were spotted on filter papers and dried. The simple Chelex method was used to prepare DNA templates for the nested PCR assay. Higher malaria prevalence rates for both clinical (78.2%) and field samples (30.8%) were obtained with the nested PCR method than by microscopy (76.1% and 27.5%, respectively). Nested PCR was more sensitive than microscopy in detecting mixed P. falciparum and P. vivax infections, detected 5 more malaria samples than microscopy on the first round of microscopical examination, and detected malaria in 3 microscopically negative samples. Nested PCR failed to detect parasite DNA in 2 microscopically positive samples, an overall sensitivity of 97.4% compared to microscopy. The nested PCR method, when coupled with simple dried blood spot sampling, is a useful tool for collecting accurate malaria epidemiological data, particularly in remote regions of the world.
    Matched MeSH terms: DNA, Protozoan/analysis
  11. Kissinger JC, Collins WE, Li J, McCutchan TF
    J Parasitol, 1998 Apr;84(2):278-82.
    PMID: 9576499
    Plasmodium inui (Halberstaedter and von Prowazek, 1907), a malarial parasite of Old World monkeys that occurs in isolated pockets throughout the Celebes, Indonesia, Malaysia, and the Philippines, has traditionally been considered to be related more closely to Plasmodium malariae of humans (and its primate counterpart Plasmodium brasilianum), than to other primate Plasmodium species. This inference was made in part because of the similarities in the periodicities or duration of the asexual cycle in the blood, the extended sporogonic cycle, and the longer period of time for development of the pre-erythrocytic stages in the liver. Both P. inui and P. malariae have quartan (72 hr) periodicities associated with their asexual cycle, whereas other primate malarias, such as Plasmodium fragile and Plasmodium cynomolgi, are associated with tertian periodicities (48 hr), and Plasmodiumn knowlesi, with a quotidian (24 hr) periodicity. Phylogenetic analyses of portions of orthologous small subunit ribosomal genes reveal that P. inui is actually more closely related to the Plasmodium species of the "vivax-type" lineage than to P. malariae. Ribosomal sequence analysis of many different, geographically isolated, antigenically distinct P. inui isolates reveals that the isolates are nearly identical in sequence and thus members of the same species.
    Matched MeSH terms: DNA, Protozoan/chemistry
  12. Benavente ED, Gomes AR, De Silva JR, Grigg M, Walker H, Barber BE, et al.
    Sci Rep, 2019 07 08;9(1):9873.
    PMID: 31285495 DOI: 10.1038/s41598-019-46398-z
    The zoonotic Plasmodium knowlesi parasite is the most common cause of human malaria in Malaysia. Genetic analysis has shown that the parasites are divided into three subpopulations according to their geographic origin (Peninsular or Borneo) and, in Borneo, their macaque host (Macaca fascicularis or M. nemestrina). Whilst evidence suggests that genetic exchange events have occurred between the two Borneo subpopulations, the picture is unclear in less studied Peninsular strains. One difficulty is that P. knowlesi infected individuals tend to present with low parasitaemia leading to samples with insufficient DNA for whole genome sequencing. Here, using a parasite selective whole genome amplification approach on unprocessed blood samples, we were able to analyse recent genomes sourced from both Peninsular Malaysia and Borneo. The analysis provides evidence that recombination events are present in the Peninsular Malaysia parasite subpopulation, which have acquired fragments of the M. nemestrina associated subpopulation genotype, including the DBPβ and NBPXa erythrocyte invasion genes. The NBPXb invasion gene has also been exchanged within the macaque host-associated subpopulations of Malaysian Borneo. Our work provides strong evidence that exchange events are far more ubiquitous than expected and should be taken into consideration when studying the highly complex P. knowlesi population structure.
    Matched MeSH terms: DNA, Protozoan/genetics*
  13. Kundave VR, Ram H, Shahzad M, Garg R, Banerjee PS, Nehra AK, et al.
    Infect Genet Evol, 2019 11;75:103962.
    PMID: 31302242 DOI: 10.1016/j.meegid.2019.103962
    Genetic characterization of Theileria species infecting bovines in India was attempted targeting the 18S ribosomal RNA region of the parasite. Blood samples of bovines (n = 452), suspected for haemoprotozoan infections, from 9 different states of the country were microscopically examined for Theileria species infection. Four Theileria spp. positive blood samples from each state were randomly utilized for PCR amplification of the 18S rRNA gene (approx. 1529 bp) followed by cloning and sequencing. The sequence data analysis of all the 36 isolates revealed that 33 isolates had high sequence similarity with published sequences of T. annulata, whereas 3 isolates (MF287917, MF287924 and MF287928) showed close similarity with published sequences of T. orientalis. Sequence homology within the isolates ranged between 95.8 and 100% and variation in the length of targeted region was also noticed in different isolates (1527-1538 nt). Phylogenetic tree created for T. annulata sequences revealed that a total of 24 Indian isolates formed a major clade and grouped together with isolates originating from countries like China, Spain, Turkey and USA. Remaining 09 isolates clustered in a separate group and were closely related to the TA5 isolate of T. annulata (a new genotype) originating from India and also with the isolates from East Asian countries like Japan and Malaysia. All the three T. orientalis isolates had minimal intraspecific variation (99-100% homology) amongst themselves. Further, in the phylogenetic analysis T. orientalis Indian isolates were found to cluster away from other 14 isolates of T. buffeli/sergenti/orientalis originating from different countries (Australia, China, Indonesia and Spain). However, these 3 isolates clustered together with the T. buffeli Indian isolate (EF126184). Present study confirmed the circulation of different genotypes of T. annulata in India, along with T. orientalis isolates.
    Matched MeSH terms: DNA, Protozoan/genetics
  14. Wilcox JS, Kerschner A, Hollocher H
    Infect Genet Evol, 2019 11;75:103994.
    PMID: 31421245 DOI: 10.1016/j.meegid.2019.103994
    Plasmodium knowlesi is an important causative agent of malaria in humans of Southeast Asia. Macaques are natural hosts for this parasite, but little is conclusively known about its patterns of transmission within and between these hosts. Here, we apply a comprehensive phylogenetic approach to test for patterns of cryptic population genetic structure between P. knowlesi isolated from humans and long-tailed macaques from the state of Sarawak in Malaysian Borneo. Our approach differs from previous investigations through our exhaustive use of archival 18S Small Subunit rRNA (18S) gene sequences from Plasmodium and Hepatocystis species, our inclusion of insertion and deletion information during phylogenetic inference, and our application of Bayesian phylogenetic inference to this problem. We report distinct clades of P. knowlesi that predominantly contained sequences from either human or macaque hosts for paralogous A-type and S-type 18S gene loci. We report significant partitioning of sequence distances between host species across both types of loci, and confirmed that sequences of the same locus type showed significantly biased assortment into different clades depending on their host species. Our results support the zoonotic potential of Plasmodium knowlesi, but also suggest that humans may be preferentially infected with certain strains of this parasite. Broadly, such patterns could arise through preferential zoonotic transmission of some parasite lineages or a disposition of parasites to transmit within, rather than between, human and macaque hosts. Available data are insufficient to address these hypotheses. Our results suggest that the epidemiology of P. knowlesi may be more complicated than previously assumed, and highlight the need for renewed and more vigorous explorations of transmission patterns in the fifth human malarial parasite.
    Matched MeSH terms: DNA, Protozoan/genetics
  15. Win SY, Chel HM, Hmoon MM, Htun LL, Bawm S, Win MM, et al.
    Acta Trop, 2020 Dec;212:105719.
    PMID: 32976841 DOI: 10.1016/j.actatropica.2020.105719
    Village chicken production, a traditional, small-scale, and extensive backyard poultry industry, has been profitable for local farmers in Myanmar. However, there is scanty information available concerning the infection of these chickens with avian pathogens, including haemoprotozoan parasites. In the present study, we provide the first report of microscopic detection and molecular identification of Leucocytozoon and Plasmodium parasites from seven different areas of Myanmar. Leucocytozoon gametocytes were detected in 17.6% (81/461) of the blood smears from village chickens. The nested polymerase chain reaction (PCR) for targeting Leucocytozoon mitochondrial cytochrome b (cyt b) genes had a 17.6% positive rate. Although the positive rate of nested PCR targeting Plasmodium/Haemoproteus cyt b was 34.3%, the PCR protocol was observed to possibly amplify DNA of a certain species of Leucocytozoon. There were no obvious clinical signs in the infected birds. Statistical analysis of the microscopic detection and PCR detection rates using the age and sex of birds as internal factors revealed that the statistical significances differed according to the study area. The sequencing of 32 PCR products obtained from each study area revealed infection by Leucocytozoon caulleryi in three birds, Leucocytozoon sabrazesi in two birds, Leucocytozoon schoutedeni in two birds, Leucocytozoon sp. in eighteen birds, and Plasmodium juxtanucleare in seven birds; however, Haemoproteus infection was not detected. While L. sabrazesi was detected in chickens from the central region of Myanmar, the other haemosporidians were detected in those from different areas. In the haplotype analysis, we detected 17 haemosporidian cyt b haplotypes, including two for L. caulleryi, one for L. sabrazesi, two for L. schoutedeni, nine for Leucocytozoon sp., and three for P. juxtanucleare. Phylogenetic analysis of the cyt b haplotypes revealed a considerably close genetic relationship among chicken haemosporidians detected in Myanmar, Thailand, and Malaysia. These results indicate that well-recognized widespread species of chicken Leucocytozoon and Plasmodium are distributed nationwide in Myanmar, providing new insights into the ecosystem and control strategies of haemosporidian parasites in domesticated chickens in Myanmar.
    Matched MeSH terms: DNA, Protozoan/genetics*
  16. Anuar TS, Al-Mekhlafi HM, Abdul Ghani MK, Abu Bakar E, Azreen SN, Salleh FM, et al.
    Int J Parasitol, 2012 Dec;42(13-14):1165-75.
    PMID: 23123168 DOI: 10.1016/j.ijpara.2012.10.003
    Currently, species-specific information on Entamoeba infections is unavailable in Malaysia and is restricted worldwide due to the re-description of pathogenic Entamoeba histolytica and non-pathogenic Entamoeba dispar and Entamoeba moshkovskii. Therefore, this cross-sectional study was conducted to provide the first known documented data on the true prevalence of these three species in western Malaysia using a molecular method. Another aim of this study was to determine the association of potential risk factors associated with each Entamoeba sp. A total of 500 stool samples from three Orang Asli tribes were randomly collected. The overall prevalence of E. histolytica, E. dispar and E. moshkovskii determined by microscopy was 18.6% (93/500). Molecular analysis revealed that while most Entamoeba-positive individuals were infected with E. dispar (13.4%), followed by E. histolytica (3.2%) and E. moshkovskii (1.0%), the present findings show low prevalence rates of mixed infections with E. histolytica and E. dispar (2%), E. dispar and E. moshkovskii (1.2%) and association infections of E. histolytica, E. dispar and E. moshkovskii (0.4%). Logistical regression analysis indicates that the dynamics of the transmission of the three Entamoeba spp. was different. Of six statistically significant variables observed in the univariate analysis, three were retained as significant risk factors for E. histolytica infection in the logistical regression model. These factors were (i) not washing hands after playing with soil or gardening (Odds ratio (OR)=4.7; 95% confidence level (CI)=1.38, 16.14; P=0.013), (ii) indiscriminate defecation in the river or bush (OR=5.7; 95% CI=1.46, 21.95; P=0.012) and (iii) close contact with domestic animals (OR=5.4; 95% CI=1.36, 2.51; P=0.017). However, subjects with family members who were infected with E. histolytica/E. dispar/E. moshkovskii (OR=3.8; 95 CI=2.11, 6.86; P<0.001) and those who consumed raw vegetables (OR=1.8; 95% CI=1.01, 3.23; P=0.047) were more likely to be infected with E. dispar. On the other hand, no associated factor was identified with E. moshkovskii infection. Nevertheless, diarrhoea (P=0.002) and other gastroenteritis symptoms (P<0.001) were only associated with E. histolytica infection. The present study provides new insight into the distribution and risk factors of E. histolytica, E. dispar and E. moshkovskii infections among Orang Asli communities in Malaysia. Identifying the different risk factors of E. histolytica and E. dispar infections will help in the planning specific strategies in the control and prevention of each infection in the communities. Moreover, it emphasises the need for molecular methods to determine the species-specific prevalence of Entamoeba spp.
    Matched MeSH terms: DNA, Protozoan/genetics
  17. Goh XT, Chua KH, Kee BP, Lim YAL
    Trop Med Int Health, 2020 02;25(2):172-185.
    PMID: 31733137 DOI: 10.1111/tmi.13348
    OBJECTIVE: Plasmodium knowlesi, the fifth human malaria parasite, has caused mortality in humans. We aimed to identify P. knowlesi novel binding peptides through a random linear dodecapeptide phage display targeting the 19-kDa fragment of Merozoite Surface Protein-1 protein.

    METHODS: rPkMSP-119 protein was heterologously expressed using Expresso® Solubility and Expression Screening System and competent E. cloni® 10G cells according to protocol. Three rounds of biopanning were performed on purified rPkMSP-119 to identify binding peptides towards rPkMSP-119 using Ph.D.™-12 random phage display library. Binding sites of the identified peptides to PkMSP-119 were in silico predicted using the CABS-dock web server.

    RESULTS: Four phage peptide variants that bound to PkMSP-119 were identified after three rounds of biopanning, namely Pkd1, Pkd2, Pkd3 and Pkd4. The sequences of both Pkd1 and Pkd2 consist of a large number of histidine residues. Pkd1 showed positive binding signal with 6.1× vs. BSA control. Docking results showed that Pkd1 and Pkd2 were ideal binding peptides for PkMSP-119 .

    CONCLUSION: We identified two novel binding peptides of PkMSP-119 , Pkd1 (HFPFHHHKLRAH) and Pkd2 (HPMHMLHKRQHG), through phage display. They provide a valuable starting point for the development of novel therapeutics.

    Matched MeSH terms: DNA, Protozoan/analysis
  18. Ola-Fadunsin SD, Gimba FI, Abdullah DA, Abdullah FJF, Sani RA
    Acta Parasitol, 2020 Mar;65(1):165-173.
    PMID: 31797192 DOI: 10.2478/s11686-019-00150-9
    BACKGROUND: Animal trypanosomiasis (Surra) caused by Trypanosoma evansi (T. evansi) is known to be one of the important haemoprotozoan parasites that causes great economical loss on animal production due to mortality and loss of condition.

    METHODS: A cross-sectional study was designed to evaluate the prevalence and risk factors associated with T. evansi infection among cattle in Peninsular Malaysia. Polymerase chain reaction (PCR) was employed on 1045 blood samples collected from 43 farms. A well-structured questionnaire was used to collect data on risk factors associated with T. evansi prevalence. The RoTat 1.2 set of primers was used to amplify products of 205 base pair.

    RESULTS: The overall prevalence was found to be 17.9% (187/1045; 95% CI = 15.66-20.31). Trypanosoma evansi was detected among cattle in all the States of Peninsular Malaysia. Breeds of cattle and closeness to waste area, where the risk factors significantly (p 

    Matched MeSH terms: DNA, Protozoan/genetics
  19. Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, et al.
    Malar J, 2016 09 02;15(1):450.
    PMID: 27590474 DOI: 10.1186/s12936-016-1494-0
    BACKGROUND: Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia.

    METHODS: Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations.

    RESULTS: Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively.

    CONCLUSIONS: The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.

    Matched MeSH terms: DNA, Protozoan/genetics
  20. Foo PC, Chan YY, Mohamed M, Wong WK, Nurul Najian AB, Lim BH
    Anal Chim Acta, 2017 May 08;966:71-80.
    PMID: 28372729 DOI: 10.1016/j.aca.2017.02.019
    This study highlighted the development of a four target nitrocellulose-based nucleic acid lateral flow immunoassay biosensor in a dry-reagent strip format for interpretation of double-labelled double-stranded amplicons from thermostabilised triplex loop-mediated isothermal amplification assay. The DNA biosensor contained two test lines which captured biotin and texas red labelled amplicons; a LAMP internal amplification control line that captured digoxigenin labelled amplicon; and a chromatography control line that validated the functionality of the conjugated gold nanoparticles and membrane. The red lines on detection pad were generated when the gold nanoparticles conjugated antibody bound to the fluorescein labelled amplicons, and the capture agents bound to their specific hapten on the other 5' end of the double-stranded amplicon. The applicability of this DNA biosensor was demonstrated using amoebiasis-causing Entamoeba histolytica simultaneously with the non-pathogenic but morphologically identical Entamoeba dispar and Entamoeba moshkovskii. The biosensor detection limit was 10 E. histolytica trophozoites, and revealed 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. Heat stability test showed that the biosensor was stable for at least 181 days at ambient temperature. This ready-to-use and cold-chain-free biosensor facilitated the post-LAMP analysis based on visualisation of lines on strip instead of observation of amplicon patterns in agarose gel.
    Matched MeSH terms: DNA, Protozoan/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links