PATIENTS AND METHODS: Formalin-fixed, paraffin-embedded tissue samples of 47 CRCs surgically resected at the Kuala Lumpur Hospital (KLH) between 1999 and 2000 were used. Immunohistochemical staining with monoclonal antibodies against cyclin-D1 and survivin and polyclonal antibodies against Wnt-1 and WISP-1 was performed. Results of immunohistochemistry were analysed for correlation between biomolecules and histopathological data of the patients.
RESULTS: Of the 47 CRCs, 26 (55.3%), 15 (31.9%), 5 (10.6%) and 28 (59.6%) of the tumours exhibited positivity for Wnt-1, WISP-1, cyclin D1 and survivin, respectively. A lower percentage of the 40 apparently normal adjacent tissues were found to be positive for Wnt-1 (7, 17.5%), WISP-1 (+/-5, 12.5%) and survivin (13, 32.5%), but cyclin D1 was not detected in any of them. Interestingly, the total scores of Wnt-1, WISP-1 and survivin were significantly higher in CRC tissues (p=0.001, 0.034 and 0.044, respectively). Using the Spearman rank correlation test, a positive linear relationship was found between total Wnt-1 score with total WISP-1 score (rho=0.319, p=0.003) and total survivin score (rho=0.609, p=or<0.001). The expression of WISP-1 in the CRC tissues was found to be positively correlated with patients older than 60 years old (p=0.011). In addition, nuclear cyclin-D1 expression was found to be associated with poorly differentiated CRC tissues (p<0.001, Table 5) and right-sided CRC tumour (p=0.019, Table 6). Total WISP-1 score was associated with well-differentiated CRC tissues (p=0.029).
CONCLUSIONS: Overexpression and interplay between Wnt-1, WISP-1, survivin and cyclin-D1 may play a role in tumorigenesis, possibly by promoting cell cycle checkpoint progression, accelerating cell growth and inhibiting apoptosis. Our data may provide useful information towards the search for potent therapeutic targets towards the development of novel treatment strategies for CRC.
METHODS: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.
RESULTS: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.
CONCLUSIONS: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.
MATERIALS AND METHODS: A total of 17 patients were selected fulfilling one of the Bethesda criteria: colorectal cancer diagnosed in a patient aged less than 50 years old, having synchronous and metachronous colorectal cancer or with a strong family history. Immunohistochemical staining was performed on paraffin embedded tumour tissue samples using four antibodies: MLH1, MSH2, MSH6 and PMS2.
RESULTS: Twelve out of 17 patients (70.6%) were noted to have a family history. A total of 41% (n=7) of the patients had abnormal immunohistochemical staining with one or more of the four antibodies. Loss of expression were noted in 13 tumour tissues with a negative staining score <4. Of 13 tumour tissues, four showed loss expression of MLH1. For PMS2, loss of expression were noted in five cases. Both MSH2 and MSH6 showed loss of expression in two tumour tissues respectively.
CONCLUSIONS: Revised Bethesda criteria and immunohistochemical analysis constituted a convenient approach and is recommended to be a first-line screening for Lynch syndrome in Malay cohorts.
METHODS: A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral.
RESULTS: COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores.
CONCLUSIONS: the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.