Displaying publications 21 - 40 of 46 in total

Abstract:
Sort:
  1. Goh BH, Chan CK, Kamarudin MN, Abdul Kadir H
    J Ethnopharmacol, 2014 Apr 28;153(2):375-85.
    PMID: 24613274 DOI: 10.1016/j.jep.2014.02.036
    Swietenia macrophylla King is a traditional herb used to treat various diseases including hypertension, diabetes and cancer. Previous study demonstrated its anti-tumor effect but the potential mechanisms have not been clearly defined. The current study was to further investigate the underlying mechanism of ethyl acetate fraction of Swietenia macrophylla (SMEAF)-induced anti-proliferative effect and apoptosis in HCT116 colorectal carcinoma cell.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  2. Khoo JJ, Gunn A, Peh SC
    Malays J Pathol, 2013 Jun;35(1):45-57.
    PMID: 23817394 MyJurnal
    Malignant transformation from normal colonic mucosa to carcinomas may be accelerated by genetic loss or inactivation of genes of the DNA mismatch repair system. The aim of the study was to determine the local incidence and pattern of immunohistochemical expression of mismatch repair proteins namely: hMLH1, hMSH2 and hMSH6 in a series of colorectal carcinomas (CRCs) and correlate this to their clinical and pathological features. Forty-three out of 298 cases of CRCs (14.4%) showed abnormal staining pattern for mismatch repair proteins with a majority (65.1%) showing single hMLH1 loss. Tumours with mismatch repair defect (MMR-d) were frequently found at the right side of colon (p<0.001), poorly differentiated carcinomas (p<0.001), produced more mucin (p=0.007), exophytic growth (p=0.007) and were bigger (p=0.002) than tumours with no mismatch repair defect. Immunohistochemical stains for mismatch repair proteins could be done in local laboratories on these selected cases before referring for the expensive molecular test.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  3. Abedini F, Hosseinkhani H, Ismail M, Domb AJ, Omar AR, Chong PP, et al.
    Int J Nanomedicine, 2012;7:4159-68.
    PMID: 22888250 DOI: 10.2147/IJN.S29823
    The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP) levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  4. Yaacob NS, Darus HM, Norazmi MN
    Exp. Toxicol. Pathol., 2008 Sep;60(6):505-12.
    PMID: 18579355 DOI: 10.1016/j.etp.2008.05.006
    Studies have shown that ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) can induce differentiation and inhibit proliferation of several cancer cells. The present study was performed to investigate the effects of the PPARgamma ligand, ciglitazone, and the involvement of PPARgamma in modulating the growth of human colorectal cancer cells. Lactate dehydrogenase release assay showed that ciglitazone potently inhibited HT-29 (well-differentiated) and COLO-205 (poorly differentiated) colorectal adenocarcinoma cell growth. Measurement of apoptosis by flow cytometry using a fluorescein-conjugated monoclonal antibody against cytokeratin 18 revealed a high induction of apoptosis by ciglitazone in a time-dependent fashion. The expression of PPARgamma1 but not PPARgamma2 mRNA was significantly downregulated as measured by real-time quantitative PCR, and the PPARgamma protein levels were decreased as determined by Western blot analysis. We conclude that ciglitazone treatment suppressed colon cancer cell growth via induction of apoptosis. However, the anticancer effects of ciglitazone may not depend solely on PPARgamma activation.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  5. Khor TO, Gul YA, Ithnin H, Seow HF
    Int J Colorectal Dis, 2006 May;21(4):291-300.
    PMID: 16041507
    BACKGROUND AND AIMS: It is well accepted that activation of Wnt signalling occurs in colorectal carcinoma (CRC), but the correlation amongst the various proteins involved in primary tumours are still unclear. The expression of the inducer of this pathway, Wnt-1, and the downstream effectors, WISP-1, cyclin-D1 and survivin proteins, was compared in a series of CRC tissues with the apparently normal adjacent tissues to determine the relationship of these proteins.

    PATIENTS AND METHODS: Formalin-fixed, paraffin-embedded tissue samples of 47 CRCs surgically resected at the Kuala Lumpur Hospital (KLH) between 1999 and 2000 were used. Immunohistochemical staining with monoclonal antibodies against cyclin-D1 and survivin and polyclonal antibodies against Wnt-1 and WISP-1 was performed. Results of immunohistochemistry were analysed for correlation between biomolecules and histopathological data of the patients.

    RESULTS: Of the 47 CRCs, 26 (55.3%), 15 (31.9%), 5 (10.6%) and 28 (59.6%) of the tumours exhibited positivity for Wnt-1, WISP-1, cyclin D1 and survivin, respectively. A lower percentage of the 40 apparently normal adjacent tissues were found to be positive for Wnt-1 (7, 17.5%), WISP-1 (+/-5, 12.5%) and survivin (13, 32.5%), but cyclin D1 was not detected in any of them. Interestingly, the total scores of Wnt-1, WISP-1 and survivin were significantly higher in CRC tissues (p=0.001, 0.034 and 0.044, respectively). Using the Spearman rank correlation test, a positive linear relationship was found between total Wnt-1 score with total WISP-1 score (rho=0.319, p=0.003) and total survivin score (rho=0.609, p=or<0.001). The expression of WISP-1 in the CRC tissues was found to be positively correlated with patients older than 60 years old (p=0.011). In addition, nuclear cyclin-D1 expression was found to be associated with poorly differentiated CRC tissues (p<0.001, Table 5) and right-sided CRC tumour (p=0.019, Table 6). Total WISP-1 score was associated with well-differentiated CRC tissues (p=0.029).

    CONCLUSIONS: Overexpression and interplay between Wnt-1, WISP-1, survivin and cyclin-D1 may play a role in tumorigenesis, possibly by promoting cell cycle checkpoint progression, accelerating cell growth and inhibiting apoptosis. Our data may provide useful information towards the search for potent therapeutic targets towards the development of novel treatment strategies for CRC.

    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  6. Musa M, Ali A
    Future Oncol, 2020 Oct;16(29):2329-2344.
    PMID: 32687721 DOI: 10.2217/fon-2020-0384
    Accumulation of cancer-associated fibroblasts (CAFs) in the tumor microenvironment is associated with poor prognosis and recurrence of colorectal cancer (CRC). Despite their prominent roles in colorectal carcinogenesis, there is a lack of robust and specific markers to classify the heterogeneous and highly complex CAF populations. This has resulted in confusing and misleading definitions of CAFs in cancer niche. Advancements in molecular biology approaches have open doors to reliable CAF marker detection methods in various solid tumors. These discoveries would contribute to more efficient screening, monitoring and targeted therapy of CRC thus potentially will reduce cancer morbidity and mortality rates. This review highlights current scenarios, dilemma, translational potentials of CAF biomarker and future therapeutic applications involving CAF marker identification in CRC.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  7. Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS
    Molecules, 2021 Jan 13;26(2).
    PMID: 33450878 DOI: 10.3390/molecules26020376
    Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 ± 0.89 µg/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 ± 3.12 µg/mL) and silymarin (>200 µg/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  8. Al-Khayal K, Alafeefy A, Vaali-Mohammed MA, Mahmood A, Zubaidi A, Al-Obeed O, et al.
    BMC Cancer, 2017 01 03;17(1):4.
    PMID: 28049506 DOI: 10.1186/s12885-016-3005-7
    BACKGROUND: Colorectal cancer (CRC) is the 3(rd) most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown.

    METHODS: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.

    RESULTS: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.

    CONCLUSIONS: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.

    Matched MeSH terms: Colorectal Neoplasms/metabolism
  9. Sheikh BY, Sarker MMR, Kamarudin MNA, Mohan G
    Biomed Pharmacother, 2017 Dec;96:834-846.
    PMID: 29078261 DOI: 10.1016/j.biopha.2017.10.038
    Despite various anticancer reports, antiproliferative and apoptosis inducing activity of citral in HCT116 and HT29 cells have never been reported. This study aimed to evaluate the cytotoxic and apoptosis inducing effects of citral in colorectal cancer cell lines. The citral-treated cells were subjected to MTT assay followed by flow cytometric Annexin V-FITC/PI, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) determination. The apoptotic proteins expression was investigated by Western blot analysis. Citral inhibited the growth of HCT116 and HT29 cells by dose- and time-dependent manner without inducing cytotoxicity in CCD841-CoN normal colon cells. Flow cytometric analysis showed that citral (50-200μM; 24-48h) induced the externalization of phoshpotidylserine and reduced the mitochondrial membrane potential in HCT116 and HT29 cells. Citral elevated intracellular ROS level while attenuating GSH levels in HCT116 and HT29 cells which were reversed with N-acetycysteine (2mM) pre-treatment indicating that citral induced mitochondrial-mediated apoptosis via augmentation of intracellular ROS. Citral induced the phosphorylation of p53 protein and the expression of Bax while decreasing Bc-2 and Bcl-xL expression which promoted the cleavage of caspase-3. Collectively, our data suggest that citral induced p53 and ROS-mediated mitochondrial-mediated apoptosis in human colorectal cancer HCT116 and HT29 cells.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  10. Thent ZC, Zaidun NH, Azmi MF, Senin MI, Haslan H, Salehuddin R
    Curr Drug Targets, 2017;18(6):734-750.
    PMID: 27919208 DOI: 10.2174/1389450118666161205125548
    Colorectal cancer (CRC) remains one of the major leading causes of cancer related morbidity and mortality. Apart from the conventional anti-neoplastic agents, metformin, a biguanide anti-diabetic agent, has recently found to have anti-cancer property. Several studies observed the effect of metformin towards its anti-cancer effect on colon or colorectal cancer in diabetic patients. However, only a few studies showed its effect on colorectal cancer in relation to the non-diabetic status. The present review aimed to highlight the insight into the molecular pathway of metformin towards colorectal cancer in the absence of diabetes mellitus. In CRC-independent of diabetes mellitus, highly deregulation of PI3K/AKT pathway is found which activates the downstream mammalian target of rapamycin (mTOR). Metformin inhibits cancer growth in colon by suppressing the colonic epithelial proliferation by inhibiting the mTOR pathway. Metformin exerts its anti-neoplastic effects by acting on tumour suppressor pathway via activating the adenosine monophosphate.activated protein kinase (AMPK) signaling pathway. Metformin interrupts the glucose metabolism by activating the AMPK. Metformin reduces tumour cell growth and metastasis by activating the p53 tumour suppressor gene. In addition to its therapeutic benefits, metformin is easily accessible, cost effective with better tolerance to the patients compared to the chemotherapeutic agents. This review summarised modern findings on the therapeutic applications of metformin on the colorectal cancer with no evidences of diabetes mellitus.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  11. Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N
    Sci Rep, 2019 Nov 11;9(1):16497.
    PMID: 31712601 DOI: 10.1038/s41598-019-53063-y
    Chemo-resistance is associated with poor prognosis in colorectal cancer (CRC), with the absence of early biomarker. Exosomes are microvesicles released by body cells for intercellular communication. Circular RNAs (circRNAs) are non-coding RNAs with covalently closed loops and enriched in exosomes. Crosstalk between circRNAs in exosomes and chemo-resistance in CRC remains unknown. This research aims to identify exosomal circRNAs associated with FOLFOX-resistance in CRC. FOLFOX-resistant HCT116 CRC cells (HCT116-R) were generated from parental HCT116 cells (HCT116-P) using periodic drug induction. Exosomes were characterized using transmission electron microscopy (TEM), Zetasizer and Western blot. Our exosomes were translucent cup-shaped structures under TEM with differential expression of TSG101, CD9, and CD63. We performed circRNAs microarray using exosomal RNAs from HCT116-R and HCT116-P cells. We validated our microarray data using serum samples. We performed drug sensitivity assay and cell cycle analysis to characterize selected circRNA after siRNA-knockdown. Using fold change >2 and p 
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  12. Hajrezaie M, Hassandarvish P, Moghadamtousi SZ, Gwaram NS, Golbabapour S, Najihussien A, et al.
    PLoS One, 2014;9(3):e91246.
    PMID: 24618844 DOI: 10.1371/journal.pone.0091246
    Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF).
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  13. Yip WK, Choo CW, Leong VC, Leong PP, Jabar MF, Seow HF
    APMIS, 2013 Oct;121(10):954-66.
    PMID: 23992303 DOI: 10.1111/apm.12152
    Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real-time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well-differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki-67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  14. Wan Juhari WK, Wan Abdul Rahman WF, Mohd Sidek AS, Abu Hassan MR, Ahmad Amin Noordin KB, Zakaria AD, et al.
    Asian Pac J Cancer Prev, 2015;16(9):3767-71.
    PMID: 25987035
    BACKGROUND: Lynch syndrome (LS) is an inherited predisposition to colorectal, endometrial (uterine) and other cancers. Although most cancers are not inherited, about 5 percent (%) of people who have colorectal or endometrial cancer have the Lynch syndrome. It involves the alteration of mismatch repair (MMR) genes; MLH1, MSH2, MSH6 or PMS2. In this study, we analyzed the expression of MMR proteins in colorectal cancer in a Malay cohort by immunohistochemistry.

    MATERIALS AND METHODS: A total of 17 patients were selected fulfilling one of the Bethesda criteria: colorectal cancer diagnosed in a patient aged less than 50 years old, having synchronous and metachronous colorectal cancer or with a strong family history. Immunohistochemical staining was performed on paraffin embedded tumour tissue samples using four antibodies: MLH1, MSH2, MSH6 and PMS2.

    RESULTS: Twelve out of 17 patients (70.6%) were noted to have a family history. A total of 41% (n=7) of the patients had abnormal immunohistochemical staining with one or more of the four antibodies. Loss of expression were noted in 13 tumour tissues with a negative staining score <4. Of 13 tumour tissues, four showed loss expression of MLH1. For PMS2, loss of expression were noted in five cases. Both MSH2 and MSH6 showed loss of expression in two tumour tissues respectively.

    CONCLUSIONS: Revised Bethesda criteria and immunohistochemical analysis constituted a convenient approach and is recommended to be a first-line screening for Lynch syndrome in Malay cohorts.

    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  15. Chan CK, Supriady H, Goh BH, Kadir HA
    J Ethnopharmacol, 2015 Jun 20;168:291-304.
    PMID: 25861953 DOI: 10.1016/j.jep.2015.03.072
    Elephantopus scaber also known as Elephant's foot (Asteraceae family) has a plethora of traditional applications including dysuria, diarrhea, dysentery, leukemia and cancer. This study aimed to investigate the apoptosis inducing effects of E. scaber and the underlying mechanisms in HCT116 colorectal cell line.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  16. Hong SK, Gul YA, Ithnin H, Talib A, Seow HF
    Asian J Surg, 2004 Jan;27(1):10-7.
    PMID: 14719508
    BACKGROUND: Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS.

    METHODS: A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral.

    RESULTS: COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores.

    CONCLUSIONS: the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  17. Nassar ZD, Aisha AF, Idris N, Khadeer Ahamed MB, Ismail Z, Abu-Salah KM, et al.
    Oncol Rep, 2012 Mar;27(3):727-33.
    PMID: 22134768 DOI: 10.3892/or.2011.1569
    Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  18. Chowchaikong N, Nilwarangkoon S, Laphookhieo S, Tanunyutthawongse C, Watanapokasin R
    Int J Oncol, 2018 Jun;52(6):2031-2040.
    PMID: 29620273 DOI: 10.3892/ijo.2018.4353
    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  19. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  20. Chok KC, Koh RY, Ng MG, Ng PY, Chye SM
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443626 DOI: 10.3390/molecules26165038
    Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5'-adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links