The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
Cloud Computing provides a solution to enterprise applications in resolving their services at all level of Software, Platform, and Infrastructure. The current demand of resources for large enterprises and their specific requirement to solve critical issues of services to their clients like avoiding resources contention, vendor lock-in problems and achieving high QoS (Quality of Service) made them move towards the federated cloud. The reliability of the cloud has become a challenge for cloud providers to provide resources at an instance request satisfying all SLA (Service Level Agreement) requirements for different consumer applications. To have better collation among cloud providers, FLA (Federated Level Agreement) are given much importance to get consensus in terms of various KPI’s (Key Performance Indicator’s) of the individual cloud providers. This paper proposes an FLASLA Aware Cloud Collation Formation algorithm (FS-ACCF) considering both FLA and SLA as major features affecting the collation formation to satisfy consumer request instantly. In FS-ACCF algorithm, fuzzy preference relationship multi-decision approach was used to validate the preferences among cloud providers for forming collation and gaining maximum profit. Finally, the results of FS-ACCF were compared with S-ACCF (SLA Aware Collation Formation) algorithm for 6 to 10 consecutive requests of cloud consumers with varied VM configurations for different SLA parameters like response time, process time and availability.
Cloud computing technology has succeeded in attracting the interest of both academics and industries because of its ability to provide flexible, cost-effective, and adaptable services in IT solution deployment. The services offered to Cloud Service Subscriber (CSS) are based on the concept of on-demand self-service, scalability, and rapid elasticity, which allows fast deployment of IT solutions, whilst leads to possible misconfiguration, un-patched system, etc. which, allows security threats to compromise the cloud services operations. From the viewpoint of Cloud Service Provider (CSP), incidents such as data loss and information breach, will tarnish their reputations, whilst allow them to conserve the issues internally, in which there is no transparency between CSP and CSS. In the aspects of information security, CSP is encouraged to practice cybersecurity in their cloud services by adopting ISO/IEC27017:2015 inclusive of all additional security controls as mandatory requirements. This study was conducted to identify factors that are influencing the CSP readiness level in the cybersecurity implementation of their cloud services by leveraging the developed pre-assessment model to determine the level of cloud security readiness. Approached the study is based on the combination of qualitative and quantitative assessment method in validating the proposed model through interview and prototype testing. The findings of this study had shown that factors that influence the CSP level of cloud security readiness are based on these domains; technology, organisation, policy, stakeholders, culture, knowledge, and environment. The contribution of the study as a Pre-Assessment Model for CSP which is suitable to be used as a guideline to provide a safer cloud computing environment.
Various aspects of task execution load balancing of Internet of Things (IoTs) networks can be optimised using intelligent algorithms provided by software-defined networking (SDN). These load balancing aspects include makespan, energy consumption, and execution cost. While past studies have evaluated load balancing from one or two aspects, none has explored the possibility of simultaneously optimising all aspects, namely, reliability, energy, cost, and execution time. For the purposes of load balancing, implementing multi-objective optimisation (MOO) based on meta-heuristic searching algorithms requires assurances that the solution space will be thoroughly explored. Optimising load balancing provides not only decision makers with optimised solutions but a rich set of candidate solutions to choose from. Therefore, the purposes of this study were (1) to propose a joint mathematical formulation to solve load balancing challenges in cloud computing and (2) to propose two multi-objective particle swarm optimisation (MP) models; distance angle multi-objective particle swarm optimization (DAMP) and angle multi-objective particle swarm optimization (AMP). Unlike existing models that only use crowding distance as a criterion for solution selection, our MP models probabilistically combine both crowding distance and crowding angle. More specifically, we only selected solutions that had more than a 0.5 probability of higher crowding distance and higher angular distribution. In addition, binary variants of the approaches were generated based on transfer function, and they were denoted by binary DAMP (BDAMP) and binary AMP (BAMP). After using MOO mathematical functions to compare our models, BDAMP and BAMP, with state of the standard models, BMP, BDMP and BPSO, they were tested using the proposed load balancing model. Both tests proved that our DAMP and AMP models were far superior to the state of the art standard models, MP, crowding distance multi-objective particle swarm optimisation (DMP), and PSO. Therefore, this study enables the incorporation of meta-heuristic in the management layer of cloud networks.
With continuous advancements in Internet technology and the increased use of cryptographic techniques, the cloud has become the obvious choice for data sharing. Generally, the data are outsourced to cloud storage servers in encrypted form. Access control methods can be used on encrypted outsourced data to facilitate and regulate access. Multi-authority attribute-based encryption is a propitious technique to control who can access encrypted data in inter-domain applications such as sharing data between organizations, sharing data in healthcare, etc. The data owner may require the flexibility to share the data with known and unknown users. The known or closed-domain users may be internal employees of the organization, and unknown or open-domain users may be outside agencies, third-party users, etc. In the case of closed-domain users, the data owner becomes the key issuing authority, and in the case of open-domain users, various established attribute authorities perform the task of key issuance. Privacy preservation is also a crucial requirement in cloud-based data-sharing systems. This work proposes the SP-MAACS scheme, a secure and privacy-preserving multi-authority access control system for cloud-based healthcare data sharing. Both open and closed domain users are considered, and policy privacy is ensured by only disclosing the names of policy attributes. The values of the attributes are kept hidden. Characteristic comparison with similar existing schemes shows that our scheme simultaneously provides features such as multi-authority setting, expressive and flexible access policy structure, privacy preservation, and scalability. The performance analysis carried out by us shows that the decryption cost is reasonable enough. Furthermore, the scheme is demonstrated to be adaptively secure under the standard model.
Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities. This paper describes an intelligent system for monitoring and analyzing agricultural environmental conditions, including weather, soil, and crop health, that uses internet-connected sensors and equipment. This work makes two significant contributions. It first makes it possible to use sensors linked to the IoT to accurately monitor the environment remotely. Gathering and analyzing data over time may give us valuable insights into daily fluctuations and long-term patterns. The second benefit of AI integration is the remote control; it provides for essential activities like irrigation, pest management, and disease detection. The technology can optimize water usage by tracking plant development and health and adjusting watering schedules accordingly. Intelligent Control Systems (Matlab/Simulink Ver. 2022b) use a hybrid controller that combines fuzzy logic with standard PID control to get high-efficiency performance from water pumps. In addition to monitoring crops, smart cameras allow farmers to make real-time adjustments based on soil moisture and plant needs. Potentially revolutionizing contemporary agriculture, this revolutionary approach might boost production, sustainability, and efficiency.
Fog computing (FC) is an evolving computing technology that operates in a distributed environment. FC aims to bring cloud computing features close to edge devices. The approach is expected to fulfill the minimum latency requirement for healthcare Internet-of-Things (IoT) devices. Healthcare IoT devices generate various volumes of healthcare data. This large volume of data results in high data traffic that causes network congestion and high latency. An increase in round-trip time delay owing to large data transmission and large hop counts between IoTs and cloud servers render healthcare data meaningless and inadequate for end-users. Time-sensitive healthcare applications require real-time data. Traditional cloud servers cannot fulfill the minimum latency demands of healthcare IoT devices and end-users. Therefore, communication latency, computation latency, and network latency must be reduced for IoT data transmission. FC affords the storage, processing, and analysis of data from cloud computing to a network edge to reduce high latency. A novel solution for the abovementioned problem is proposed herein. It includes an analytical model and a hybrid fuzzy-based reinforcement learning algorithm in an FC environment. The aim is to reduce high latency among healthcare IoTs, end-users, and cloud servers. The proposed intelligent FC analytical model and algorithm use a fuzzy inference system combined with reinforcement learning and neural network evolution strategies for data packet allocation and selection in an IoT-FC environment. The approach is tested on simulators iFogSim (Net-Beans) and Spyder (Python). The obtained results indicated the better performance of the proposed approach compared with existing methods.
In this ever-progressive digital era, conventional e-learning methods have become inadequate to handle the requirements of upgraded learning processes especially in the higher education. E-learning adopting Cloud computing is able to transform e-learning into a flexible, shareable, content-reusable, and scalable learning methodology. Despite plentiful Cloud e-learning frameworks have been proposed across literature, limited researches have been conducted to study the usability factors predicting continuance intention to use Cloud e-learning applications. In this study, five usability factors namely Computer Self Efficacy (CSE), Enjoyment (E), Perceived Ease of Use (PEU), Perceived Usefulness (PU), and User Perception (UP) have been identified for factor analysis. All the five independent variables were hypothesized to be positively associated to a dependent variable namely Continuance Intention (CI). A survey was conducted on 170 IT students in one of the private universities in Malaysia. The students were given one trimester to experience the usability of Cloud e-Learning application. As an instrument to analyse the usability factors towards continuance intention of the application, a questionnaire consisting thirty questions was formulated and used. The collected data were analysed using SMARTPLS 3.0. The results obtained from this study observed that computer self-efficacy and enjoyment as intrinsic motivations significantly predict continuance intention, while perceived ease of use, perceived usefulness and user perception were insignificant. This outcome implies that computer self-efficacy and enjoyment significantly affect the willingness of students to continue using Cloud e-learning application in their studies. The discussions and implications of this study are vital for researchers and practitioners of educational technologies in higher education.