METHODS: An Agilent 1200 series high-performance liquid chromatography (HPLC) unit using a diode-array detector (DAD) has been employed and optimized to detect IPTS in cosmetic products. For the separation, a reverse-phase Hypersil Gold C8 column (5 μm, 4.6 mm i.d. 250 mm) 5 mM tetrabutylammonium phosphate buffer 50 : 50, (v/v) solution in acetonitrile as mobile phase, in isocratic mode and a flow rate of 0.8 mL min(-1) were used. A second method using a gas chromatography/mass selective detector GC-MSD was also developed to confirm the IPTS identity in the cosmetic products.
RESULTS: Recoveries of IPTS from cosmetic matrices such as a lotion, cleansing milk and a cream ranged from 94.0% to 101.1% with <5% relative standard deviation (%RSD) showing good accuracy and repeatability of the method. The six-point calibration curves (determined over the range 0.5-50 μg mL(-1) ) have a correlation coefficient of 0.9999 (based on HPLC peak area) and 0.9998 (based on HPLC peak height). The intra- and interday precisions (measured by the %RSD) of the method were <2% and <5%, respectively, indicating that the developed method is reliable, precise and reproducible. The detection and quantification limit of the method were found to be 0.5 μg mL(-1) and 1.6 μg mL(-1) , respectively. Analyses of 83 commercial cosmetics showed no presence of IPTS.
CONCLUSIONS: The validation data indicated that this method was suitable for the quantitative analysis of IPTS in commercial cosmetics. This method is applicable for analyses of trace levels of IPTS in cosmetics and has the advantage of using only simple sample preparation steps.
OBJECTIVE: A sensitive method for the estimation of CRM in plasma, as well as fecal matter-based solid self-nano emulsifying drug delivery system (S-SNEDDS), has been reported for the first time.
METHODS: A bioanalytical method was optimized using Box-Behnken Design having 13 runs and 3 responses. The optimized method was developed using methanol and water (70:30 v/v) with a flow rate of 1 mL/min. Quercetin was used as an internal standard. A specificity test was also performed for the developed CRM solid self-nano emulsifying drug delivery system.
RESULTS: The retention time of CRM was found to be 14.18 minutes. The developed method was validated and found to be linear in the range of 50-250 ng/mL with an R2 of 0.999. Accuracy studies indicated that CRM had a percentage recovery of less than 105% and more than 95%, respectively. Precision studies were carried out for inter, intraday, and inter-analyst precision, and the %RSD was found to be less than 2%. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.37 ng/mL and 10.23 ng/mL, respectively. Stability studies for shortterm, long term and freeze-thaw cycles showed a %RSD of less than 2%, indicating the stability of CRM in the plasma matrix. Moreover, the blank fecal microbiota extract slurry did not show any peak at the retention time of CRM in a CRM-loaded solid nanoemulsifying drug delivery system containing fecal microbiota extract indicating its specificity.
CONCLUSION: Hence, the developed method can have clinical implications as it helps estimate CRM in blood samples and also provides a simple and sensitive method for the estimation of plant-based flavonoids along with fecal microbiota extract formulations.