OBJECTIVES: Based on the multitargeted biological activities approach of ligustrazine based chalcones, in current study 18 synthetic ligustrazine-containing α, β-unsaturated carbonyl-based 1, 3-Diphenyl-2-propen-1-one derivatives were evaluated for their inhibitory effects on growth of five different types of cancer cells.
METHODS: All compounds were evaluated for anticancer effects on various cancer cell lines by propidium iodide fluorescence assay and various other assays were performed for mechanistic studies.
RESULTS: Majority of compounds exhibited strong inhibition of cancer cells especially synthetic compounds 4a and 4b bearing 1-Pyridin-3-yl-ethanone as a ketone moiety in main structural backbone were found most powerful inhibitors of cancer cell growth. Most active 9 compounds among whole series were selected for further studies related to different cancer targets including EGFR TK kinases, tubulin polymerization, KAF and BRAFV600E.
CONCLUSION: Synthetic derivatives including 4a-b and 5a-b showed multitarget approach and showed strong inhibitory effects on EGFR, FAK and BRAF while three compounds including 3e bearing methoxy substitution, 4a and 4b with 1- pyridin-3-yl-ethanone moiety showed the inhibition of tubulin polymerization.
Objective: This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo.
Materials and Methods: The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets.
Results: It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test.
Conclusion: Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.
METHODS: Isolation of compounds from G. segetum leaves was conducted using vacuum liquid chromatography (VLC) and column chromatography (CC). Two new compounds, namely 4,5,4'-trihydroxychalcone and 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol, together with stigmasterol and β-sitosterol were isolated from G. segetum methanol extract and their structures were determined spectroscopically. The presence of gallic acid and rutin in the extract was determined quantitatively by a validated HPLC method. G. segetum methanol extract and its constituents were investigated for their effects on chemotaxis, phagocytosis, β2 integrin (CD18) expression, and reactive oxygen species (ROS) of polymorphonuclear leukocytes (PMNs), lymphocytes proliferation, cytokine release and nitric oxide (NO) production of phagocytes.
RESULTS: All the samples significantly inhibited all the innate immune responses tested except CD 18 expression on surface of leukocytes. Among the samples, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol exhibited the strongest inhibitory on chemotaxis, phagocytosis, ROS and NO production. The compound exhibited exceptionally strong inhibitions on ROS and chemotaxis activities with IC50 values lower than the positive controls, aspirin and ibuprofen, respectively. 4,5,4'-Trihydroxychalcone revealed the strongest immunosuppressive activity on proliferation of lymphocytes (IC50 value of 1.52 μM) and on release of IL-1β (IC50 value of 6.69 μM). Meanwhile rutin was the most potent sample against release of TNF-α from monocytes (IC50, 16.96 μM).
CONCLUSION: The extract showed strong immunosuppressive effects on various components of the immune system and these activities were possibly contributed mainly by 4,5,4'-trihydroxychalcone, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol and rutin.
METHODS: MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.
RESULTS: We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.
CONCLUSIONS: FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.