MATERIALS AND METHODS: In this study, reprogramming of human dermal fibroblasts (NHDF) into iPSC was carried out using non-integrative Sendai virus for transduction. The iPSC clones were characterised based on the morphological changes, gene expression of pluripotency markers, and spontaneous and directed differentiation abilities into cells of different germ layers.
RESULTS: On day 18-25 post-transduction, colonies with embryonic stem cell-like morphology were obtained. The iPSC generated were free of Sendai genome and transgene after passage 10, as confirmed by RT-PCR. NHDF-derived iPSC expressed multiple pluripotency markers in qRT-PCR and immunofluorescence staining. When cultured in suspension for 8 days, iPSC successfully formed embryoid body-like spheres. NHDF-derived iPSC also demonstrated the ability to undergo directed differentiation into ectoderm and endoderm.
CONCLUSION: NHDF were successfully reprogrammed into iPSC using non-integrating Sendai virus for transduction.
MATERIALS AND METHODS: The differentiation of fibroblast-like cells from SHED was carried out by using specific human recombinant connective tissue growth factor (CTGF). To characterize fibroblastic differentiation, the induced cells were subjected to morphological changes, proliferation rate, gene expression analysis using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), flow cytometry, and immunofluorescence staining. The commercial primary human gingival fibroblasts served as positive control in this study.
RESULTS: The results from characterization analysis were compared with that of commercial cells to ensure that the cells differentiated from SHED were fibroblast-like cells. The results showed the inductive effect of CTGF for fibroblastic differentiation in SHED. SHED-derived fibroblasts were successfully characterized despite having similar morphological appearance, i.e., (i) significant proliferation rate between fibroblast-like cells and SHED, (ii) high expression of fibroblast-associated markers in qRT-PCR analysis, and (iii) positive staining against collagen type 1, fibroblast-specific protein 1, and human thymic fibroblasts in flow cytometry analysis and immunofluorescence staining. The same expression patterns were found in primary human gingival fibroblasts, respectively. SHED as negative control showed lower expression or no signal, thus confirming the cells differentiated from SHED were fibroblast-like cells.
CONCLUSIONS: Taken together, the protocol adopted in this study suggests CTGF to be an appropriate inducer in the differentiation of SHED into fibroblast-like cells.
CLINICAL RELEVANCE: The fibroblast-like cells differentiated from SHED could be used in future in vitro and in vivo dental tissue regeneration studies as well as in clinical applications where these cells are needed.
METHODS: Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo.
RESULTS: CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth.
CONCLUSIONS: CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.
MATERIALS AND METHODS: Rhesus macaque choroid retinal endothelial cell line (RF/6A) cells were cultivated in normal glucose (NG) and high glucose (HG) conditions. The mRNA expression of miR-424 and Cyclin D1 (CCND1) was quantified using qPCR, and the protein quantity of CCND1 was detected using Western Blot. miR-424 mimics, miR-424 inhibitors, miR-424 inhibitor+ siRNA-CCND1 or vehicle molecules were transfected into RF/6A cells. MTT test was used to assess cell proliferation, and flow cytometric analysis was used to assess cell cycle. The interaction between miR-424 and CCND1 was predicted using bioinformatics and validated using dual luciferase reporter analysis.
RESULTS: miR-424 was up-regulated, and cell viability was reduced in HG compared to NG. By reversing the expression of miR-424 in certain situations, the phenotypes can be changed. CCND1 has been identified as a miR-424 target gene, and it may be regulated at the transcriptional and translational levels. Manipulation of silencing CCND1 can counteract the effect of transfecting miR-424 inhibitor into RF/6A cells under HG such as proliferation stimulation.
CONCLUSIONS: Our findings indicate that miR-424 plays an important role in hyperglycemia induced ARPE-19 cells damage, and it could be a new therapeutic target for DR by preventing retinal vascular cells from HG-induced injury.
METHODS: The 50% inhibitory concentration (IC50) of PTZ and TFP in SW1116, SW480, HCT-15, and COLO205 colon cancer cell lines are measured using MTT. Western blot and immunocytochemistry were used to determine the expression of PCNA, cyclin D1 (CD1), and POPDC proteins. Cell migration was observed using a scratch wound-healing assay.
RESULTS: Treatment with PTZ and TFP inhibited colon cancer cells growth in a dose-dependent manner. PTZ and TFP significantly inhibited the activation of proliferation markers, PCNA and CD1, and the migration of colon cancer cells. Furthermore, POPDC protein was significantly suppressed in all cell types of colon cancer, particularly in SW480. Finally, the CaM antagonist upregulates the POPDC1 expression in colon cancer cells.
CONCLUSION: These findings suggest that CaM antagonists suppress colon cancer cells proliferation via downregulation of CD1 and PCNA. In addition, POPDC protein could be used as a biomarker in colon cancer, and CaM antagonist could be used to regulate POPDC1 expression. This study suggests that targeting POPDC1 with CaM inhibition could be a potential therapeutic strategy for colon cancer treatment.
.