Displaying publications 21 - 40 of 161 in total

Abstract:
Sort:
  1. Vijayarathna S, Oon CE, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 May;89:499-514.
    PMID: 28249252 DOI: 10.1016/j.biopha.2017.02.075
    Medicinal plants have been accepted as a gold mine, with respect to the diversity of their phytochemicals. Many medicinal plants extracts are potential anticancer agents. Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is one of the most significant native medicinal plants and is found throughout Malaysia. Hence, the present study was intended to assess the anticancer properties of P. longifolia leaf methanolic extract (PLME) and its underlying mechanisms. The Annexin V/PI flow cytometry analysis showed that PLME induces apoptosis in HeLa cells in dose-dependent manner whereas the PI flow cytometric analysis for cell cycle demonstrated the accumulation of cells at sub G0/G1, G0/G1 and G2/M phases. Investigation with JC-1 flow cytometry analysis indicated increase in mitochondria membrane potential depolarisation corresponding to increase in PLME concentrations. PLME was also shown to influence intracellular reactive oxygen species (ROS) by exerting anti-oxidant (half IC50) and pro-oxidant (IC50and double IC50) affect against HeLa cells. PLME treatment also displayed DNA damage in HeLa cells in concentration depended fashion. The proteomic profiling array exposed the expression of pro-apoptotic and anti-apoptotic proteins upon PLME treatment at IC50concentration in HeLa cells. Pro-apoptotic proteins; BAX, BAD, cytochrome c, caspase-3, p21, p27 and p53 were found to be significantly up-regulated while anti-apoptotic proteins; BCL-2 and BCL-w were found to be significantly down-regulated. This investigation postulated the role of p53 into mediating apoptosis, cell cycle arrest and mitochondrial potential depolarisation by modulating the redox status of HeLa cells.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects*
  2. Aziz MY, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al.
    Oncol Lett, 2014 May;7(5):1479-1484.
    PMID: 24765160
    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.
    Matched MeSH terms: Cell Cycle Checkpoints; G1 Phase Cell Cycle Checkpoints
  3. Othman H, Rahman H, Mohan S, Aziz S, Marif H, Ford D, et al.
    PMID: 32922508 DOI: 10.1155/2020/8764096
    This study investigated the in vivo antileukemic activity of palladium nanoparticles ([email protected]) mediated by white tea extract in a murine model. The cell viability effect of [email protected], "blank" Pd nanoparticles, and white tea extract alone was determined in murine leukemia WEHI-3B cells and normal mouse fibroblasts (3T3 cells). Apoptotic and cell cycle arrest effects of [email protected] in WEHI-3B cells were evaluated. The effects of [email protected] administered orally to leukemic mice at 50 and 100 mg/kg daily over 28 days were evaluated. [email protected] reduced the viability of WHEI-3B cells with IC50 7.55 μg/ml at 72 h. Blank Pd nanoparticles and white tea extract alone had smaller effects on WHEI-3B viability and on normal fibroblasts. [email protected] increased the proportion of Annexin V-positive WHEI-3B cells and induced G2/M cell cycle arrest. Leukemic cells in the spleen were reduced by [email protected] with an increase in Bax/Bcl-2 and cytochrome-C protein and mRNA levels indicating the activation of the mitochondrial apoptotic pathway. These effects replicated the effects of ATRA and were not observed using blank Pd nanoparticles. [email protected] afford therapeutic efficacy against leukemia likely to pivot on activation of the mitochondrial pathway of apoptotic signaling and hence appear attractive potential candidates for development as a novel anticancer agent.
    Matched MeSH terms: Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints
  4. Samie N, Muniandy S, Kanthimathi MS, Haerian BS, Azudin RE
    Sci Rep, 2016 Apr 13;6:24172.
    PMID: 27072064 DOI: 10.1038/srep24172
    The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
    Matched MeSH terms: Cell Cycle Checkpoints
  5. Mossanen-Parsi A, Parisi D, Browne-Marke N, Bharudin I, Connell SR, Mayans O, et al.
    Mol Microbiol, 2020 Oct 12.
    PMID: 33047379 DOI: 10.1111/mmi.14613
    The role of post-transcriptional RNA modification is of growing interest. One example is the addition of non-templated uridine residues to the 3´ end of transcripts. In mammalian systems uridylation is integral to cell cycle control of histone mRNA levels. This regulatory mechanism is dependent on the nonsense mediated decay (NMD) component, Upf1, which promotes histone mRNA uridylation and degradation in response to the arrest of DNA synthesis. We have identified a similar system in Aspergillus nidulans, where Upf1 is required for the regulation of histone mRNA levels. However, other NMD components are also implicated, distinguishing it from the mammalian system. As in human cells, 3´ uridylation of histone mRNA is induced upon replication arrest. Disruption of this 3´ tagging has a significant but limited effect on histone transcript regulation, consistent with multiple mechanisms acting to regulate mRNA levels. Interestingly, 3´ end degraded transcripts are also subject to re-adenylation. Both mRNA pyrimidine tagging and re-adenylation are dependent on the same terminal-nucleotidyltransferases, CutA and CutB, and we show this is consistent with the in vitro activities of both enzymes. Based on these data we argue that mRNA 3´ tagging has diverse and distinct roles associated with transcript degradation, functionality and regulation.
    Matched MeSH terms: Cell Cycle Checkpoints
  6. Saad N, Alberio R, Johnson AD, Emes RD, Giles TC, Clarke P, et al.
    Oncotarget, 2018 Mar 23;9(22):16008-16027.
    PMID: 29662623 DOI: 10.18632/oncotarget.24664
    Inducing stable control of tumour growth by tumour reversion is an alternative approach to cancer treatment when eradication of the disease cannot be achieved. The process requires re-establishment of normal control mechanisms that are lost in cancer cells so that abnormal proliferation can be halted. Embryonic environments can reset cellular programmes and we previously showed that axolotl oocyte extracts can reprogram breast cancer cells and reverse their tumorigenicity. In this study, we analysed the gene expression profiles of oocyte extract-treated tumour xenografts to show that tumour reprogramming involves cell cycle arrest and acquisition of a quiescent state. Tumour dormancy is associated with increased P27 expression, restoration of RB function and downregulation of mitogen-activated signalling pathways. We also show that the quiescent state is associated with increased levels of H4K20me3 and decreased H4K20me1, an epigenetic profile leading to chromatin compaction. The epigenetic reprogramming induced by oocyte extracts is required for RB hypophosphorylation and induction of P27 expression, both occurring during exposure to the extracts and stably maintained in reprogrammed tumour xenografts. Therefore, this study demonstrates the value of oocyte molecules for inducing tumour reversion and for the development of new chemoquiescence-based therapies.
    Matched MeSH terms: Cell Cycle Checkpoints
  7. Siti Nurfatimah Mohd Shahpudin, Doblin Anak Sandai, Sharlina Mohamad
    MyJurnal
    Protein kinases (PKs) are regulators of protein phosphorylation in many infectious diseases, including malaria. How- ever, the cellular functions of majority of PKs in Plasmodium falciparum remain unknown. The mechanisms involved in P. falciparum cell cycle progress are not fully understood. The activation of cyclin-dependent kinases (CDKs), which constitute a PK family that includes crucial regulators of cell cycle progression in eukaryotes, is strictly being coordinated by the interaction with specific cyclins at well-defined points within the cell cycle. These cyclin/CDK complexes are very well characterised in humans, but little is known in P. falciparum. This review expand our un- derstanding of the characteristic of CDKs and cyclins in P. falciparum, and paves the way for further investigations on the precise molecular role of these crucial regulatory proteins in mosquito and human. This represents a valuable step towards the elucidation of cell cycle control mechanisms in malaria parasites.
    Matched MeSH terms: Cell Cycle Checkpoints
  8. Verma R, Bairy I, Tiwari M, Bhat GV, Shenoy GG
    Mol Divers, 2019 Aug;23(3):541-554.
    PMID: 30430400 DOI: 10.1007/s11030-018-9889-1
    A series of novel 2-amino-4-(3-hydroxy-4-phenoxyphenyl)-6-(4-substituted phenyl) nicotinonitriles were synthesized and evaluated against HepG2, A-549 and Vero cell lines. Compounds 3b (IC50 16.74 ± 0.45 µM) and 3p (IC50 10.57 ± 0.54 µM) were found to be the most active compounds against A-549 cell line among the evaluated compounds. Further 3b- and 3p-induced apoptosis was characterized by AO/EB (acridine orange/ethidium bromide) nuclear staining method and also by DNA fragmentation study. A decrease in cell viability and initiation of apoptosis was clearly evident through the morphological changes in the A-549 cells treated with 3b and 3p when stained with this method. Fragmentation of DNA into nucleosomes was observed which further confirmed the cell apoptosis in cells treated with compound 3b. Flow cytometry studies confirmed the cell cycle arrest at G2/M phase in A549 cells treated with compound 3b. Further in silico studies performed supported the in vitro anticancer activity of these compounds as depicted by dock score and binding energy values.
    Matched MeSH terms: G2 Phase Cell Cycle Checkpoints/drug effects; M Phase Cell Cycle Checkpoints/drug effects
  9. Hiu JJ, Yap MKK
    Biochem Soc Trans, 2020 04 29;48(2):719-731.
    PMID: 32267491 DOI: 10.1042/BST20200110
    The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
    Matched MeSH terms: Cell Cycle Checkpoints
  10. Nasar Alwahaibi, Jamaludin Mohamed
    MyJurnal
    While cancer is considered to be one of the leading causes of death worldwide, there is a growing scientific and public interests on selenium as a dietary and antioxidant of many diseases, in particular, cancer. Despite advanced technology and significant improvement of surgical, chemical, hormonal and radio therapies, hepatocellular carcinoma (HCC) is still common in Asia and Africa and is increasing in the developed countries. Prognosis of HCC at an early stage is still challenging. At the moment, combination of Alpha feto protein (AFP) and ultrasonography tests offers more accurate and sensitive results for the diagnosis of HCC. Selenium (also known as the moon element) has been recognized for almost 49 years as an antioxidant and anti cancer agent. The weight of evidence supports the position of selenium as an anti cancer agent for HCC but the molecular mechanism of how selenium inhibits HCC is still unknown. Numerous theories have been proposed and selenium induced apoptosis and cell cycle arrest is the predominant one so far.
    Matched MeSH terms: Cell Cycle Checkpoints
  11. Mohamad Fairus AK, Choudhary B, Hosahalli S, Kavitha N, Shatrah O
    Biochimie, 2017 Apr;135:154-163.
    PMID: 28196676 DOI: 10.1016/j.biochi.2017.02.003
    Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion which subsequently leads to cell cycle arrest at S-phase.
    Matched MeSH terms: Cell Cycle Checkpoints
  12. Zakaria N, Mahdzir MA, Yusoff M, Mohd Arshad N, Awang K, Nagoor NH
    Molecules, 2018 Oct 23;23(11).
    PMID: 30360475 DOI: 10.3390/molecules23112733
    BACKGROUND: Pinnatane A from the bark of Walsura pinnata was investigated for its anti-cancer properties by analyzing the cytotoxic activities and cell cycle arrest mechanism induced in two different liver cancer cell lines.

    METHODS: A 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to analyze the pinnatane A selectivity in inducing cell death in cancer and normal cells. Various biological assays were carried out to analyze the anti-cancer properties of pinnatane A, such as a live/dead assay for cell death microscopic visualization, cell cycle analysis using propidium iodide (PI) to identify the cell cycle arrest phase, annexin V-fluorescein isothiocyanate (annexin V-FITC)/PI flow cytometry assay to measure percentage of cell populations at different stages of apoptosis and necrosis, and DNA fragmentation assay to verify the late stage of apoptosis.

    RESULTS: The MTT assay identified pinnatane A prominent dose- and time-dependent cytotoxicity effects in Hep3B and HepG2 cells, with minimal effect on normal cells. The live/dead assay showed significant cell death, while cell cycle analysis showed arrest at the G₀/G₁ phase in both cell lines. Annexin V-FITC/PI flow cytometry and DNA fragmentation assays identified apoptotic cell death in Hep3B and necrotic cell death in HepG2 cell lines.

    CONCLUSIONS: Pinnatane A has the potential for further development as a chemotherapeutic agent prominently against human liver cells.

    Matched MeSH terms: Cell Cycle Checkpoints
  13. Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, et al.
    Drug Des Devel Ther, 2017;11:3045-3063.
    PMID: 29123378 DOI: 10.2147/DDDT.S144415
    The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
    Matched MeSH terms: G2 Phase Cell Cycle Checkpoints/drug effects; M Phase Cell Cycle Checkpoints/drug effects
  14. Ho YF, Yajit NLM, Shiau JY, Malek SNA, Shyur LF, Karsani SA
    Appl Biochem Biotechnol, 2023 Nov;195(11):6867-6880.
    PMID: 36947367 DOI: 10.1007/s12010-023-04384-2
    Our previous findings demonstrated that Helichrysetin possessed promising anti-cancer activity. It was able to induce apoptosis in the A549 cell line. However, its mechanism of action is unknown. The present study aimed to unravel possible underlying molecular mechanisms of helichrysetin-induced apoptosis in A549 (human lung carcinoma) cells using comparative quantitative proteomics (iTRAQ labeled), followed by an exhaustive bioinformatics analysis. Our results suggested that DNA damage response (DDR) and cell cycle arrest were responsible for lung cancer cell death with helichrysetin treatment. Among proteins that changed in abundance were Nrf2 and HMOX1. They are oxidative stress-related proteins and were increased in abundance. BRAT1 was also increased in abundance, suggesting an increase in DNA damage repair, indicating the occurrence of DNA damage due to oxidative stress. However, several essential DDR downstream proteins such as p-ATM, BRCA1, FANCD2, and Rb1 that would further increase DNA damage were found to be dramatically decreased in relative abundance. Cell cycle-related proteins, p53, p21, and cyclin D1, were increased while cyclin A, cyclin E, and cdk2 were decreased. This is predicted to facilitate S-phase arrest. Furthermore, excessive DNA damage and prolonged arrest would in turn result in the induction of mitochondrial-mediated apoptosis. Based on these observations, we postulate that the effects of helichrysetin were in part via the suppression of DNA damage response which led to DNA damage and prolonged cell cycle arrest. Subsequently, this event initiated mitochondrial-mediated apoptosis in A549 lung cancer cells.
    Matched MeSH terms: Cell Cycle Checkpoints
  15. Farghadani R, Naidu R
    Biomed Pharmacother, 2023 Sep;165:115170.
    PMID: 37481930 DOI: 10.1016/j.biopha.2023.115170
    Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.
    Matched MeSH terms: Cell Cycle Checkpoints
  16. Ashwaq AS, Al-Qubaisi MS, Rasedee A, Abdul AB, Taufiq-Yap YH, Yeap SK
    Int J Mol Sci, 2016 Oct 18;17(10).
    PMID: 27763535
    Dentatin (DEN), purified from the roots of Clausena excavata Burm f., has poor aqueous solubility that reduces its therapeutic application. The aim of this study was to assess the effects of DEN-HPβCD (hydroxypropyl-β-cyclodextrin) complex as an anticancer agent in HT29 cancer cell line and compare with a crystal DEN in dimethyl sulfoxide (DMSO). The exposure of the cancer cells to DEN or DEN-HPβCD complex leads to cell growth inhibition as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To analyze the mechanism, in which DEN or DEN-HPβCD complex causes the death in human colon HT29 cancer cells, was evaluated by the enzyme-linked immunosorbent assay (ELIZA)-based assays for caspase-3, 8, 9, and reactive oxygen species (ROS). The findings showed that an anti-proliferative effect of DEN or DEN-HPβCD complex were via cell cycle arrest at the G2/M phase and eventually induced apoptosis through both mitochondrial and extrinsic pathways. The down-regulation of poly(ADP-ribose) polymerase (PARP) which leaded to apoptosis upon treatment, was investigated by Western-blotting. Hence, complexation between DEN and HPβCD did not diminish or eliminate the effective properties of DEN as anticancer agent. Therefore, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents in the future.
    Matched MeSH terms: G2 Phase Cell Cycle Checkpoints/drug effects*; M Phase Cell Cycle Checkpoints/drug effects*
  17. Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, et al.
    PLoS One, 2017;12(8):e0182357.
    PMID: 28771532 DOI: 10.1371/journal.pone.0182357
    Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
    Matched MeSH terms: G2 Phase Cell Cycle Checkpoints/drug effects; M Phase Cell Cycle Checkpoints/drug effects
  18. Othman NH
    PMID: 22761637 DOI: 10.1155/2012/410406
    Honey and cancer has a sustainable inverse relationship. Carcinogenesis is a multistep process and has multifactorial causes. Among these are low immune status, chronic infection, chronic inflammation, chronic non healing ulcers, obesity, and so forth. There is now a sizeable evidence that honey is a natural immune booster, natural anti-inflammatory agent, natural antimicrobial agent, natural cancer "vaccine," and natural promoter for healing chronic ulcers and wounds. Though honey has substances of which the most predominant is a mixture of sugars, which itself is thought to be carcinogenic, it is understandable that its beneficial effect as anticancer agent raises skeptics. The positive scientific evidence for anticancer properties of honey is growing. The mechanism on how honey has anticancer effect is an area of great interest. Among the mechanisms suggested are inhibition of cell proliferation, induction of apoptosis, and cell-cycle arrest. Honey and cancer has sustainable inverse relationship in the setting of developing nations where resources for cancer prevention and treatment are limited.
    Matched MeSH terms: Cell Cycle Checkpoints
  19. Vadivelu RK, Yeap SK, Ali AM, Hamid M, Alitheen NB
    PMID: 23056140 DOI: 10.1155/2012/251362
    Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC(50) of 3.8 μg/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G(1) cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G(1) cell cycle arrest and dose-dependent DNA damage on VSMC.
    Matched MeSH terms: Cell Cycle Checkpoints
  20. Bakar SAA, Ali AM, Noor SNFM, Hamid SBS, Azhar NA, Mohamad NM, et al.
    Biomed Res Int, 2022;2022:5653136.
    PMID: 35872839 DOI: 10.1155/2022/5653136
    BACKGROUND: Combination of natural products with chemically synthesised biomaterials as cancer therapy has attracted great interest lately. Hence, this study is aimed at investigating the combined effects of goniothalamin and bioactive glass 45S5 (GTN-BG) and evaluating their anticancer properties on human breast cancer cells MCF-7.

    METHODS: The BG 45S5 was prepared using the sol-gel process followed by characterisation using PSA, BET, SEM/EDS, XRD, and FTIR. The effects of GTN-BG on the proliferation of MCF-7 were assessed by MTT, PrestoBlue, and scratch wound assays. The cell cycle analysis, Annexin-FITC assay, and activation of caspase-3/7, caspase-8, and caspase-9 assays were determined to further explore its mechanism of action.

    RESULTS: The synthesised BG 45S5 was classified as a fine powder, having a rough surface, and contains mesopores of 12.6 nm. EDS analysis revealed that silica and calcium elements are the primary components of BG powders. Both crystalline and amorphous structures were detected with 73% and 27% similarity to Na2Ca2(Si2O7) and hydroxyapatite, respectively. The combination of GTN-BG was more potent than GTN in inhibiting the proliferation of MCF-7 cells. G0/G1 and G2/M phases of the cell cycle were arrested by GTN and GTN-BG. The percentage of viable cells in GTN-BG treatment was significantly lower than that in GTN. In terms of activation of initiator caspases for both extrinsic and intrinsic apoptosis pathways, caspase-8 and caspase-9 were found more effective in response to GTN-BG than GTN.

    CONCLUSION: The anticancer effect of GTN in MCF-7 cells was improved when combined with BG. The findings provide significant insight into the mechanism of GTN-BG against MCF-7 cells, which can potentially be used as a novel anticancer therapeutic approach.

    Matched MeSH terms: Cell Cycle Checkpoints
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links