Displaying publications 21 - 40 of 48 in total

Abstract:
Sort:
  1. Sim MS, Mohamed Z, Hatim A, Rajagopal VL, Habil MH
    Brain Res, 2010 Oct 21;1357:91-6.
    PMID: 20736000 DOI: 10.1016/j.brainres.2010.08.053
    Methamphetamine is a highly addictive psychostimulant that has surged in popularity worldwide in the last decade. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, is widely expressed in the adult mammalian brain and plays an important role in the long-term survival, differentiation, and outgrowth of neurons. Previous studies suggested that the BDNF gene may be involved in the mechanisms underlying substance dependence. This study investigated the association of the BDNF gene Val66Met polymorphism with methamphetamine dependence and with psychosis in a Malaysian population with different ethnicities. The BDNF Val66Met polymorphism was genotyped by PCR-RFLP in 186 male methamphetamine-dependent subjects and in 154 male controls of four different ethnicities, namely, Malay, Chinese, Kadazan-Dusun, and Bajau. Our results showed that the distribution of the BDNF Val66Met genotype in Chinese subjects with methamphetamine dependence (OR=2.6, p=0.015) and methamphetamine psychosis (OR=0.2, p = 0.034) were significant compared with controls. The frequency of the 66Val allele in methamphetamine-dependent subjects was higher than that in the control group, suggesting that the 66Val carriers are more susceptible to methamphetamine dependence. However, 66Val allele frequency in other ethnicities was not significantly different from the controls. The results of the study also showed that in the Chinese methamphetamine-dependent subjects, there was a difference in allele frequency when comparing those who developed psychosis and those who did not. Our findings suggest that the BDNF Val66Met polymorphism may contribute to methamphetamine dependence and psychosis in the Chinese population but not in other Malaysian ethnicities.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/genetics*
  2. Lambuk L, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Ismail NM
    Neurotoxicology, 2019 01;70:62-71.
    PMID: 30385388 DOI: 10.1016/j.neuro.2018.10.009
    OBJECTIVE: N-methyl-D-aspartate (NMDA) excitotoxicity has been proposed to mediate apoptosis of retinal ganglion cells (RGCs) in glaucoma. Taurine (TAU) has been shown to have neuroprotective properties, thus we examined anti-apoptotic effect of TAU against retinal damage after NMDA exposure.

    METHODOLOGY: Sprague-Dawley rats were divided into 5 groups of 33 each. Group 1 was administered intravitreally with PBS and group 2 was similarly injected with NMDA (160 nmol). Groups 3, 4 and 5 were injected with TAU (320 nmol) 24 hours before (pre-treatment), in combination (co-treatment) and 24 hours after (post-treatment) NMDA exposure respectively. Seven days after injection, rats were sacrificed; eyes were enucleated, fixed and processed for morphometric analysis, TUNEL and caspase-3 staining. Optic nerve morphology assessment was done using toluidine blue staining. The estimation of BDNF, pro/anti-apoptotic factors (Bax/Bcl-2) and caspase-3 activity in retina was done using ELISA technique.

    RESULTS: Severe degenerative changes were observed in retinae after intravitreal NMDA exposure. The retinal morphology in the TAU pre-treated group appeared more similar to the control retinae and demonstrated a higher number of nuclei than the NMDA group both per 100 μm length (by 1.5-fold, p 

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism
  3. Ismail CAN, Suppian R, Ab Aziz CB, Long I
    Neuropeptides, 2020 Feb;79:102003.
    PMID: 31902597 DOI: 10.1016/j.npep.2019.102003
    The complications of diabetic polyneuropathy (DN) determines its level of severity. It may occur with distinctive clinical symptoms (painful DN) or appears undetected (painless DN). This study aimed to investigate microglia activation and signalling molecules brain-derived neurotrophic factor (BDNF) and downstream regulatory element antagonist modulator (DREAM) proteins in spinal cord of streptozotocin-induced diabetic neuropathy rats. Thirty male Sprague-Dawley rats (200-230 g) were randomly assigned into three groups: (1) control, (2) painful DN and (3) painless DN. The rats were induced with diabetes by single intraperitoneal injection of streptozotocin (60 mg/kg) whilst control rats received citrate buffer as a vehicle. Four weeks post-diabetic induction, the rats were induced with chronic inflammatory pain by intraplantar injection of 5% formalin and pain behaviour responses were recorded and assessed. Three days later, the rats were sacrificed and lumbar enlargement region of spinal cord was collected. The tissue was immunoreacted against OX-42 (microglia), BDNF and DREAM proteins, which was also quantified by western blotting. The results demonstrated that painful DN rats exhibited increased pain behaviour score peripherally and centrally with marked increase of spinal activated microglia, BDNF and DREAM proteins expressions compared to control group. In contrast, painless DN group demonstrated a significant reduction of pain behaviour score peripherally and centrally with significant reduction of spinal activated microglia, BDNF and DREAM proteins expressions. In conclusions, the spinal microglia activation, BDNF and DREAM proteins correlate with the pain behaviour responses between the variants of DN.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism*
  4. Abdo Qaid EY, Zulkipli NN, Zakaria R, Ahmad AH, Othman Z, Muthuraju S, et al.
    Int J Neurosci, 2021 May;131(5):482-488.
    PMID: 32202188 DOI: 10.1080/00207454.2020.1746308
    Hypoxia has been associated with cognitive impairment. Many studies have investigated the role of mTOR signalling pathway in cognitive functions but its role in hypoxia-induced cognitive impairment remains controversial. This review aimed to elucidate the role of mTOR in the mechanisms of cognitive impairment that may pave the way towards the mechanistic understanding and therapeutic intervention of hypoxia-induced cognitive impairment. mTORC1 is normally regulated during mild or acute hypoxic exposure giving rise to neuroprotection, whereas it is overactivated during severe or chronic hypoxia giving rise to neuronal cells death. Thus, it is worth exploring the possibility of maintaining normal mTORC1 activity and thereby preventing cognitive impairment during severe or chronic hypoxia.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism*
  5. Suliman NA, Taib CNM, Moklas MAM, Basir R
    Neurotox Res, 2018 02;33(2):402-411.
    PMID: 28933048 DOI: 10.1007/s12640-017-9806-x
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism
  6. Ismail CAN, Suppian R, Ab Aziz CB, Long I
    J Mol Neurosci, 2021 Feb;71(2):379-393.
    PMID: 32671697 DOI: 10.1007/s12031-020-01661-1
    The pharmacological inhibition of glial activation is one of the new approaches for combating neuropathic pain in which the role of glia in the modulation of neuropathic pain has attracted significant interest and attention. Neuron-glial crosstalk is achieved with N-methyl-D-aspartate-2B receptor (NMDAR-2B) activation. This study aims to determine the effect of ifenprodil, a potent noncompetitive NMDAR-2B antagonist, on activated microglia, brain-derived neurotrophic factors (BDNF) and downstream regulatory element antagonist modulator (DREAM) protein expression in the spinal cord of streptozotocin-induced painful diabetic neuropathy (PDN) rats following formalin injection. In this experimentation, 48 Sprague-Dawley male rats were randomly selected and divided into four groups: (n = 12): control, PDN, and ifenprodil-treated PDN rats at 0.5 μg or 1.0 μg for 7 days. Type I diabetes mellitus was then induced by injecting streptozotocin (60 mg/kg, i.p.) into the rats which were then over a 2-week period allowed to progress into the early phase of PDN. Ifenprodil was administered in PDN rats while saline was administered intrathecally in the control group. A formalin test was conducted during the fourth week to induce inflammatory nerve injury, in which the rats were sacrificed at 72 h post-formalin injection. The lumbar enlargement region (L4-L5) of the spinal cord was dissected for immunohistochemistry and western blot analyses. The results demonstrated a significant increase in formalin-induced flinching and licking behavior with an increased spinal expression of activated microglia, BDNF and DREAM proteins. It was also shown that the ifenprodil-treated rats following both doses reduced the extent of their flinching and duration of licking in PDN in a dose-dependent manner. As such, ifenprodil successfully demonstrated inhibition against microglia activation and suppressed the expression of BDNF and DREAM proteins in the spinal cord of PDN rats. In conclusion, ifenprodil may alleviate PDN by suppressing spinal microglia activation, BDNF and DREAM proteins.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/biosynthesis*; Brain-Derived Neurotrophic Factor/genetics
  7. Islam MA, Kundu S, Hassan R
    Curr Gene Ther, 2020;19(6):376-385.
    PMID: 32141417 DOI: 10.2174/1566523220666200306092556
    Multiple Sclerosis (MS) is the most common autoimmune demyelinating disease of the Central Nervous System (CNS). It is a multifactorial disease which develops in an immune-mediated way under the influences of both genetic and environmental factors. Demyelination is observed in the brain and spinal cord leading to neuro-axonal damage in patients with MS. Due to the infiltration of different immune cells such as T-cells, B-cells, monocytes and macrophages, focal lesions are observed in MS. Currently available medications treating MS are mainly based on two strategies; i) to ease specific symptoms or ii) to reduce disease progression. However, these medications tend to induce different adverse effects with limited therapeutic efficacy due to the protective function of the blood-brain barrier. Therefore, researchers have been working for the last four decades to discover better solutions by introducing gene therapy approaches in treating MS generally by following three strategies, i) prevention of specific symptoms, ii) halt or reverse disease progression and iii) heal CNS damage by promoting remyelination and axonal repair. In last two decades, there have been some remarkable successes of gene therapy approaches on the experimental mice model of MS - experimental autoimmune encephalomyelitis (EAE) which suggests that it is not far that the gene therapy approaches would start in human subjects ensuring the highest levels of safety and efficacy. In this review, we summarised the gene therapy approaches attempted in different animal models towards treating MS.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/genetics; Brain-Derived Neurotrophic Factor/metabolism
  8. Damodaran T, Hassan Z, Navaratnam V, Muzaimi M, Ng G, Müller CP, et al.
    Behav Brain Res, 2014 Dec 15;275:252-8.
    PMID: 25239606 DOI: 10.1016/j.bbr.2014.09.014
    Cerebral ischemia is one of the leading causes of death and long-term disability in aging populations, due to the frequent occurrence of irreversible brain damage and subsequent loss of neuronal function which lead to cognitive impairment and some motor dysfunction. In the present study, the real time course of motor and cognitive functions were evaluated following the chronic cerebral ischemia induced by permanent, bilateral occlusion of the common carotid arteries (PBOCCA). Male Sprague Dawley rats (200-300g) were subjected to PBOCCA or sham-operated surgery and tested 1, 2, 3 and 4 weeks following the ischemic insult. The results showed that PBOCCA significantly reduced step-through latency in a passive avoidance task at all time points when compared to the sham-operated group. PBOCCA rats also showed significant increase in escape latencies during training in the Morris water maze, as well as a reduction of the percentage of times spend in target quadrant of the maze at all time points following the occlusion. Importantly, there were no significant changes in locomotor activity between PBOCCA and sham-operated groups. The BDNF expression in the hippocampus was 29.3±3.1% and 40.1±2.6% on day 14 and 28 post PBOCCA, respectively compared to sham-operated group. Present data suggest that the PBOCCA procedure effectively induces behavioral, cognitive symptoms associated with cerebral ischemia and, consequently, provides a valuable model to study ischemia and related neurodegenerative disorder such as Alzheimer's disease and vascular dementia.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism
  9. Al-Rahbi B, Zakaria R, Othman Z, Hassan A, Ahmad AH
    ScientificWorldJournal, 2014;2014:310821.
    PMID: 24550703 DOI: 10.1155/2014/310821
    A possible interaction between glucocorticoids and estrogen-induced increases in brain-derived-neurotrophic factor (BDNF) expression in enhancing depressive-like behaviour has been documented. Here we evaluated the effects of Tualang honey, a phytoestrogen, and 17 β -estradiol (E2) on the depressive-like behaviour, stress hormones, and BDNF concentration in stressed ovariectomised (OVX) rats. The animals were divided into six groups: (i) nonstressed sham-operated control, (ii) stressed sham-operated control, (iii) nonstressed OVX, (iv) stressed OVX, (v) stressed OVX treated with E2 (20  μg daily, sc), and (vi) stressed OVX treated with Tualang honey (0.2 g/kg body weight daily, orally). Two months after surgery, the animals were subjected to social instability stress procedure followed by forced swimming test. Struggling time, immobility time, and swimming time were scored. Serum adrenocorticotropic hormone (ACTH) and corticosterone levels, and the BDNF concentration were determined using commercially available ELISA kits. Stressed OVX rats displayed increased depressive-like behaviour with significantly increased serum ACTH and corticosterone levels, while the BDNF concentration was significantly decreased compared to other experimental groups. These changes were notably reversed by both E2 and Tualang honey. In conclusion, both Tualang honey and E2 mediate antidepressive-like effects in stressed OVX rats, possibly acting via restoration of hypothalamic-pituitary-adrenal axis and enhancement of the BDNF concentration.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism*
  10. Chidambaram SB, Pandian A, Sekar S, Haridass S, Vijayan R, Thiyagarajan LK, et al.
    Environ Toxicol, 2016 Dec;31(12):1955-1963.
    PMID: 26434561 DOI: 10.1002/tox.22196
    PURPOSE: Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice.

    METHODS: Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA1 region was performed using cresyl violet staining.

    RESULTS: MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA1 region when compared with scopolamine-vehicle treated mice.

    CONCLUSION: Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism
  11. Nazree NE, Mohamed Z, Reynolds GP, Mohd Zain S, Masiran R, Sidi H, et al.
    Asia Pac Psychiatry, 2016 Dec;8(4):260-268.
    PMID: 27787964 DOI: 10.1111/appy.12210
    INTRODUCTION: The occurrence of female sexual dysfunction (FSD) in patients with major depressive disorder (MDD) receiving selective serotonin reuptake inhibitors (SSRIs) treatment gives negative impacts on patients' quality of life and causes treatment discontinuation. We aimed to investigate whether genetic polymorphism of identified candidate gene is associated with FSD in our study population.

    METHODS: This is a cross-sectional study. A total of 95 female patients with MDD who met the criteria of the study were recruited and were specifically assessed on the sexual function by trained psychiatrists. Patients' DNA was genotyped for BDNF Val66Met polymorphism using real-time polymerase chain reaction.

    RESULTS: The prevalence of FSD in this study is 31.6%. In the FSD group, patients with problematic marriage were significantly more frequent compared with patients who did not have problematic marriage (P = 0.009). Significant association was detected in the lubrication domain with BDNF Val66Met polymorphism (P = 0.030) using additive genetic model, with even stronger association when using the recessive model (P = 0.013).

    DISCUSSION: This study suggested that there was no significant association between BDNF Val66Met with FSD. However, this polymorphism is significantly associated with lubrication disorder in patients treated with SSRIs.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/genetics*
  12. Safi SZ, Saeed L, Shah H, Latif Z, Ali A, Imran M, et al.
    Mol Biol Rep, 2022 Oct;49(10):9473-9480.
    PMID: 35925485 DOI: 10.1007/s11033-022-07816-0
    BACKGROUND: The current study aimed to investigate the stimulatory effect of beta-adrenergic receptors (β-ARs) on brain derived neurotropic factor (BDNF) and cAMP response element binding protein (CREB).

    METHODS: Human Müller cells were cultured in low and high glucose conditions. Cells were treated with xamoterol (selective agonist for β1-AR), salmeterol (selective agonist for β2-AR), isoproterenol (β-ARs agonist) and propranolol (β-ARs antagonist), at 20 µM concentration for 24 h. Western Blotting assay was performed for the gene expression analysis. DNA damage was evaluated by TUNEL assay. DCFH-DA assay was used to check the level of reactive oxygen species (ROS). Cytochrome C release was measured by ELISA.

    RESULTS: Xamoterol, salmeterol and isoproterenol showed no effect on Caspase-8 but it reduced the apoptosis and increased the expression of BDNF in Müller cells. A significant change in the expression of caspase-3 was observed in cells treated with xamoterol and salmeterol as compared to isoproterenol. Xamoterol, salmeterol and isoproterenol significantly decreased the reactive oxygen species (ROS) when treated for 24 hours. Glucose-induced cytochrome c release was disrupted in Müller cells.

    CONCLUSION: β-ARs, stimulated by agonist play a protective role in hyperglycemic Müller cells, with the suppression of glucose-induced caspase-3 and cytochrome c release. B-Ars may directly mediate the gene expression of BDNF.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism
  13. Lee KW, Ching SM, Devaraj NK, Hoo FK
    Ann Transl Med, 2020 Sep;8(17):1060.
    PMID: 33145279 DOI: 10.21037/atm-20-1579
    Background: Certain candidate genes have been associated with obesity. The goal of this study is to determine the association between thirteen neuroendocrine disorder-related candidate genes and pre-pregnancy obesity among gestational diabetes mellitus (GDM) patients using the stratification approach defined the Asian and International criteria-based body mass index (BMI).

    Methods: This was a post-hoc case-control exploratory sub-analysis of a cross-sectional study among GDM women to determine which candidate single nucleotide polymorphisms (SNPs) related to neuroendocrine disorders may be associated with obesity. Factors were adjusted for socio-demographic characteristics and concurrent medical problems in this particular population. Pre-pregnancy BMI and concurrent medical profiles were obtained from maternal health records. Obesity is defined as BMI of ≥27.5 kg/m2 for Asian criteria-based BMI and >30 kg/m2 for International criteria-based BMI. Thirteen candidate genes were genotyped using Agena® MassARRAY and examined for association with pre-pregnancy obesity using multiple logistic regression analysis. The significant difference threshold was set at P value <0.05.

    Results: Three hundred and twelve GDM women were included in this study; 60.9% and 44.2% of GDM patients were obese using Asian and International criteria-based BMI, respectively. GDM patients with AA or AG genotypes in specific SNP of brain-derived neurotrophic factor (BDNF) (G > A in rs6265) are more likely to be obese (adjusted odd ratio =2.209, 95% CI, 1.305, 3.739, P=0.003) compared to those who carry the GG genotype in the SNP adjusted for parity, underlying with asthma, heart disease, anaemia, education background in the International criteria-based BMI stratification group. On the other hand, there were no associations between other candidate genes (NRG1, FKBP5, RORA, OXTR, PLEKHG1, HTR2C, LHPP, SDK2, TEX51, EPHX2, NPY5R and ANO2) and maternal obesity.

    Conclusions: In summary, BDNF rs6265 is significantly associated with pre-pregnancy obesity among GDM patients. The exact role of BDNF adjusted for diet intake and lifestyle factors merits further investigation.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor
  14. Angelopoulou E, Paudel YN, Julian T, Shaikh MF, Piperi C
    Mol Neurobiol, 2021 Apr;58(4):1372-1391.
    PMID: 33175322 DOI: 10.1007/s12035-020-02201-z
    The exact etiology of Parkinson's disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer's disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor
  15. Kamal, M., Amini, F., Ramasamy, TS
    JUMMEC, 2016;19(1):23-32.
    MyJurnal
    Glaucoma is a common eye disease that can cause irreversible damage if left undiagnosed and untreated. It is one of the most common neurodegenerative diseases causing blindness. Pre-clinical studies have been carried out on animal models of glaucoma for stem cell therapy. We carried out a systematic review to determine whether stem cell therapy had the potential to treat glaucoma. Nine studies were selected based on the predetermined inclusion and exclusion criteria. Of these nine studies, eight focused on neuroprotection conferred by stem cells, and the remaining one on neuroregeneration. Results from these studies showed that there was a potential in stem cell based therapy in treating glaucoma, especially regarding neuroprotection via neurotrophic factors. The studies revealed that a brain-derived neurotrophic factor expressed by stem cells promoted the survival of retinal ganglion cells in murine glaucoma models. The transplanted cells survived without any side effects. While these studies proved that stem cells provided neuroprotection in glaucoma, improvement of vision could not be determined. Clinical studies would be required to determine whether the protection of RGC correlated with improvement in visual function. Furthermore, these murine studies could not be translated into clinical therapy due to the heterogeneity of the experimental methods and the
    use of different cell lines. In conclusion, the use of stem cells in the clinical therapy of glaucoma will be an important step in the future as it will transform present-day treatment with the hope of restoring sight to patients with glaucoma.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor
  16. Retinasamy T, Shaikh MF, Kumari Y, Othman I
    Front Pharmacol, 2019;10:1216.
    PMID: 31736744 DOI: 10.3389/fphar.2019.01216
    Alzheimer's disease (AD) is a chronic neurodegenerative brain disease which is characterized by impairment in cognitive functioning. Orthosiphon stamineus (OS) Benth. (Lamiaceae) is a medicinal plant found around Southeast Asia that has been employed as treatments for various diseases. OS extract contains many active compounds that have been shown to possess various pharmacological properties whereby in vitro studies have demonstrated neuroprotective as well as cholinesterase inhibitory effects. This study, therefore aimed at determining whether this Malaysian plant derived flavonoid can reverse scopolamine induced learning and memory dysfunction in the novel object recognition (NOR) test and the elevated plus maze (EPM) test. In the present study, rats were treated once daily with OS 50 mg/kg, 100 mg/kg, 200 mg/kg and donepezil 1 mg/kg via oral dosing and were given intraperitoneal (ip) injection of scopolamine 1 mg/kg daily to induce cognitive deficits. Rats were subjected to behavioral analysis to assess learning and memory functions and hippocampal tissues were extracted for gene expression and immunohistochemistry studies. All the three doses demonstrated improved scopolamine-induced impairment by showing shortened transfer latency as well as the higher inflexion ratio when compared to the negative control group. OS extract also exhibited memory-enhancing activity against chronic scopolamine-induced memory deficits in the long-term memory novel object recognition performance as indicated by an increase in the recognition index. OS extract was observed to have modulated the mRNA expression of CREB1, BDNF, and TRKB genes and pretreatment with OS extract were observed to have increased the immature neurons against hippocampal neurogenesis suppressed by scopolamine, which was confirmed by the DCX-positive stained cells. These research findings suggest that the OS ethanolic extract demonstrated an improving effect on memory and hence could serve as a potential therapeutic target for the treatment of neurodegenerative diseases like AD.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor
  17. Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N
    Int J Neurosci, 2018 Oct;128(10):952-965.
    PMID: 29488424 DOI: 10.1080/00207454.2018.1446953
    PURPOSE: Amyloid beta (Aβ) is known to contribute to the pathophysiology of retinal neurodegenerative diseases such as glaucoma. Effects of intravitreal Aβ(1-42) on retinal and optic nerve morphology in animal models have widely been studied but not those of Aβ(1-40). Hence, we evaluated the time- and dose-related effects of intravitreal Aβ(1-40) on retinal and optic nerve morphology. Since oxidative stress and brain derived neurotrophic factor (BDNF) are associated with Aβ-induced neuronal damage, we also studied dose and time-related effects of Aβ(1-40) on retinal oxidative stress and BDNF levels.

    MATERIALS AND METHODS: Five groups of rats were intravitreally administered with vehicle or Aβ(1-40) in doses of 1.0, 2.5, 5 and 10 nmol. Animals were sacrificed and eyes were enucleated at weeks 1, 2 and 4 post-injection. The retinae were subjected to morphometric analysis and TUNEL staining. Optic nerve sections were stained with toluidine blue and were graded for neurodegenerative effects. The estimation of BDNF and markers of oxidative stress in retina were done using ELISA technique.

    RESULTS AND CONCLUSIONS: It was observed that intravitreal Aβ(1-40) causes significant retinal and optic nerve damage up to day 14 post-injection and there was increasing damage with increase in dose. However, on day 30 post-injection both the retinal and optic nerve morphology showed a trend towards normalization. The observations made for retinal cell apoptosis, retinal glutathione, superoxide dismutase activity and BDNF were in accordance with those of morphological changes with deterioration till day 14 and recovery by day 30 post-injection. The findings of this study may provide a guide for selection of appropriate experimental conditions for future studies.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor
  18. Mustafa MZ, Zulkifli FN, Fernandez I, Mariatulqabtiah AR, Sangu M, Nor Azfa J, et al.
    PMID: 31885664 DOI: 10.1155/2019/8258307
    This study was conducted to evaluate the effects of stingless bee honey (SBH) supplementation on memory and learning in mice. Despite many studies that show the benefits of honey on memory, reports on the nootropic effects of SBH are still lacking, and their underlying mechanism is still unclear. SBH is a honey produced by the bees in the tribe of Meliponini that exist in tropical countries. It features unique storage of honey collected in cerumen pots made of propolis. This SBH may offer a better prospect for therapeutic performance as the previous report identifies the presence of antioxidants that were greater than other honey produced by Apis sp. In this study, SBH was tested on Swiss albino mice following acute (7 days) and semichronic (35 days) supplementation. Experiments were then conducted using Morris water maze (MWM) behaviour analysis, RT-PCR for gene expression of mice striatum, and NMR for metabolomics analysis of the honey. Results indicate spatial working memory and spatial reference memory of mice were significantly improved in the honey-treated group compared with the control group. Improved memory consolidations were also observed in prolonged supplementation. Gene expression analyses of acutely treated mice demonstrated significant upregulation of BDNF and Itpr1 genes that involve in synaptic function. NMR analysis also identified phenylalanine, an essential precursor for tyrosine that plays a role at the BDNF receptor. In conclusion, SBH supplementation for seven days at 2000 mg/kg, which is equivalent to a human dose of 162 mg/kg, showed strong capabilities to improve spatial working memory. And prolonged intake up to 35 days increased spatial reference memory in the mice model. The phenylalanine in SBH may have triggered the upregulation of BDNF genes in honey-treated mice and improved their spatial memory performance.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor
  19. Haque N, Kasim NHA, Kassim NLA, Rahman MT
    Cell Prolif, 2017 Aug;50(4).
    PMID: 28682474 DOI: 10.1111/cpr.12354
    OBJECTIVES: Foetal bovine serum (FBS) is often the serum supplement of choice for in vitro human cell culture. This study compares the effect of FBS and autologous human serum (AuHS) supplement in human peripheral blood mononuclear cell (PBMC) culture to prepare secretome.

    MATERIALS AND METHODS: The PBMC (n = 7) were cultured either in RPMI-1640 containing L-glutamine and 50 units/ml Penicillin-Streptomycin (BM) or in BM with either AuHS or FBS. Viability, proliferation and differentiation of PBMC were evaluated. Paracrine factors present in the secretomes (n = 6) were analysed using ProcartaPlex Human Cytokine panel (17 plex). Ingenuity Pathway Analysis (IPA) was performed to predict activation or inhibition of biological functions related to tissue regeneration.

    RESULTS: The viability of PBMC that were cultured with FBS supplement was significantly reduced at 96 h compared to those at 0 and 24 h (P factors that are needed for regenerative therapy.

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/metabolism
  20. Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, et al.
    PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014
    Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
    Matched MeSH terms: Brain-Derived Neurotrophic Factor/biosynthesis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links