Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems).
Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.
Total femur endoprothesis is an alternative replacement for massive malignant bone tumor with intramedullary extension or skip lesion. Four patients underwent total femoral resection and replacement with megaprosthesis: three had primary malignant bone tumor and one had salvage procedure for aseptic loosening of the distal femoral replacement. Tumor-free margins were achieved in all patients with two patients required vascularized latissimus dorsi free flap cover for reconstruction of soft tissue defects. The average follow-up was 24 months (range 16 - 60 months). All four patients were still alive with three of them being disease-free and one survived even with the presence of lung metastasis. The functional results obtained were either excellent or good in all patients in accordance to the Musculoskeletal Tumors Society grading system.
In recent years, computerized posturography has become an essential tool in quantitative assessment of postural steadiness in the clinical settings. The purpose of this study was to explore the ability of the Biodex(®) Stability System (BSS) to quantify postural steadiness in below-knee amputees. A convenience sample of 10 below-knee amputees participated in the study. The overall (OSI), anterior-posterior (APSI) and medial-lateral (MLSI) stability indexes as well as the percentage of time spent in left and right quadrants and four concentric zones were measured under altered sensory conditions while standing with solid ankle cushion heel (SACH), single-axis (SA) and energy storage and release (ESAR) feet. Significant difference was found between sensory conditions in SACH and ESAR feet for OSI (SACH, p = 0.002; ESAR, p = 0.005), APSI (SACH, p = 0.036; ESAR, p = 0.003) and MLSI (SACH, p = 0.008; ESAR, p = 0.05) stability indexes. The percentage of time spent in Zone A (0°-5°) was significantly greater than the other three concentric zones (p < 0.01). The loading time percentage on their intact limb (80%-94%) was significantly longer than the amputated limb (20%-6%) in all conditions for all three prosthetic feet. Below-knee amputees showed compromised postural steadiness when visual, proprioceptive or vestibular sensory input was altered. The findings highlight that the characteristics of postural stability in amputees can be clinically assessed by utilizing the outcomes produced by the BSS.
This study describes a newly developed prosthetic leg socket design for a below-knee amputation. Excessive heat and the resulted perspiration within a prosthetic socket were the most common causes for reporting a reduced quality of life for prosthetic users. The product namely AirCirc means air circulation and it has been designed by approach of medical device design process in providing the amputees to maintain the skin temperature inside the socket. This device has been designed to provide the amputees with comfort and ultimate breathable. In order to design the device, the small hole was made in prosthetic socket surface since it has a function as air circulation. Four types of proposed sockets namely P1, P2, P3 and P4 and one control socket were compared on a single patient to determine the best design of prosthetic socket. The result successfully reveals that by using holes can be maintain the temperature inside prosthetic socket. In addition to the eco-friendly material, the woven kenaf was used as material that provides good strength as compared to glass fibre and offer sustainable and biodegradable product yet provides unique and aesthetic surface as came from woven kenaf itself. The objective of this paper is to provide the airflow prosthetic socket design and optimize the use of natural fibre in prostheses field. Thus, with the use of the environmental friendly material, functionality device and heat removal capability make the device suitable for maintaining a comfortable and healthy environment for prosthesis. Implications of Rehabilitation Newly developed prosthetic leg socket design for a below-knee amputation Device has been designed to provide the amputees with comfort and ultimate breathable Woven kenaf was used as material that provides good strength as compared to glass fibre for sustainable and biodegradable product Results show that by using holes can be maintain the temperature inside prosthetic socket.
This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
Surface electromyography (SEMG) signals can provide important information for prosthetic hand control application. In this study, time domain (TD) features were used in extracting information from the SEMG signal in determining hand motions and stages of contraction (start, middle and end). Data were collected from ten healthy subjects. Two muscles, which are flexor carpi ulnaris (FCU) and extensor carpi radialis (ECR) were assessed during three hand motions of wrist flexion (WF), wrist extension (WE) and co-contraction (CC). The SEMG signals were first segmented into 132.5 ms windows, full wave rectified and filtered with a 6 Hz low pass Butterworth filter. Five TD features of mean absolute value, variance, root mean square, integrated absolute value and waveform length were used for feature extraction and subsequently patterns were determined. It is concluded that the TD features that were used are able to differentiate hand motions. However, for the stages of contraction determination, although there were patterns observed, it is determined that the stages could not be properly be differentiated due to the variability of signal strengths between subjects.
Enucleation and evisceration are the most common surgical procedures that are performed to manage tumor, trauma, and infection. Given the consequences of surgical intervention, the conditions of the remaining eye socket may affect future prosthetic rehabilitation. A custom-made ocular prosthesis can be used to help restore the esthetics and functional defects and to improve the quality of life of patients with such conditions. An assessment must be performed on the prosthetic outcome before rehabilitation. The etiology of defect, type of surgery, condition of the remaining socket, and patient's age should all be considered. This report discusses three different etiological eye defects that have undergone enucleation and evisceration and describes the factors that have a significant role in the esthetic and functional outcome of the prosthesis. This report should serve as a helpful aid for maxillofacial prosthodontists to understand the primary objective of rehabilitating each eye defect and to meet patient expectations.
Materials with low-strength and low-impedance properties, such as elastomers and polymeric foams are major contributors to prosthetic liner design. Polyethylene-Light (Pelite™) is a foam liner that is the most frequently used in prosthetics but it does not cater to all amputees' limb and skin conditions. The study aims to investigate the newly modified Foam Liner, a combination of two different types of foams (EVA + PU + EVA) as the newly modified Foam Liner in terms of compressive and tensile properties in comparison to Pelite™, polyurethane (PU) foam, and ethylene-vinyl acetate (EVA) foam. Universal testing machine (AGS-X, Shimadzu, Kyoto, Japan) has been used to measure the tensile and compressive stress. Pelite™ had the highest compressive stress at 566.63 kPa and tensile stress at 1145 kPa. Foam Liner fell between EVA and Pelite™ with 551.83 kPa at compression and 715.40 kPa at tension. PU foam had the lowest compressive stress at 2.80 kPa and tensile stress at 33.93 kPa. Foam Liner has intermediate compressive elasticity but has high tensile elasticity compared to EVA and Pelite™. Pelite™ remains the highest in compressive and tensile stiffness. Although it is good for amputees with bony prominence, constant pressure might result in skin breakdown or ulcer. Foam Liner would be the best for amputees with soft tissues on the residual limbs to accommodate movement.
Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.
Lower limb amputee's are greatly affected in dealing with the environmental barriers such as ramps and stairs and reported high interface pressure between the residual limb and socket/liner. Interface pressure between the residual limb and socket/liner can affect the satisfaction and use of the prosthesis. Until now, little attention has been paid to interface pressure between socket and stump during ramp negotiation and its effect on amputee's satisfaction.
This study aimed to compare the effects of different suspension methods on the interface stress inside the prosthetic sockets of transtibial amputees when negotiating ramps and stairs.
Transtibial amputees encounter stairs and steps during their daily activities. The excessive pressure between residual limb/socket may reduce the walking capability of transtibial prosthetic users during ascent and descent on stairs. The purposes of the research were to evaluate the interface pressure between Dermo (shuttle lock) and Seal-In X5 (prosthetic valve) interface systems during stair ascent and descent, and to determine their satisfaction effects on users.
This study examined the kinematic differences between a body-powered prosthesis and a biomechatronics prosthesis as a transradial amputee performed activities that involve flexion/extension and supination/pronation of the wrist.
One of the main indicators of the suspension system efficiency in lower limb prostheses is vertical displacement or pistoning within the socket. Decreasing pistoning and introducing an effective system for evaluating pistoning could contribute to the amputees' rehabilitation process.
Good suspension lessens the pistoning (vertical displacement) of the residual limb inside the prosthetic socket. Several methods are used for measuring the pistoning.
The objectives of this study were to compare the effects of a newly designed magnetic suspension system with that of two existing suspension methods on pistoning inside the prosthetic socket and to compare satisfaction and perceived problems among transtibial amputees.
Different suspension systems that are used within prosthetic devices may alter the distribution of pressure inside the prosthetic socket in lower limb amputees. This study aimed to compare the interface pressure of a new magnetic suspension system with the pin/lock and Seal-In suspension systems.
Poor suspension increases slippage of the residual limb inside the socket during ambulation. The main purpose of this article is to evaluate the pistoning at the prosthetic liner-socket interface during gait and assess patients' satisfaction with two different liners. Two prostheses with seal-in and locking liners were fabricated for each of the 10 subjects with transtibial amputation. The Vicon motion system was used to measure the pistoning during gait. The subjects were also asked to complete a Prosthesis Evaluation Questionnaire. The results revealed higher pistoning inside the socket during gait with the locking liner than with the seal-in liner (p < 0.05). The overall satisfaction with the locking liner was higher (p < 0.05) because of the relative ease with which the patients could don and doff the device. As such, pistoning may not be the main factor that determines patients' overall satisfaction with the prosthesis and other factors may also contribute to comfort and satisfaction with prostheses. The article also verifies the feasibility of the Vicon motion system for measuring pistoning during gait.