Displaying publications 21 - 40 of 1211 in total

Abstract:
Sort:
  1. Abdul Kadir FFN, Che Nordin MA, S M N Mydin RB, Choong YS, Che Omar MT
    J Biomol Struct Dyn, 2024;42(22):12293-12303.
    PMID: 37837430 DOI: 10.1080/07391102.2023.2269254
    Elevated interleukin 8 (IL-8) expression has been linked to unfavorable outcomes in a range of inflammatory conditions, such as rheumatoid arthritis, psoriasis, and cancer. The human monoclonal antibody (HuMab) 10F8 and the hybridoma 35B11-B bind to an epitope on human IL-8, respectively. 10F8 inhibited interaction between IL-8 and neutrophils in eczema and pustulosis palmoplantaris patients while 35B11-B decreased size lesion in rat model. The binding interaction of monoclonal antibodies and IL-8, especially how complementarity-determining region (CDR) loops could bind the N-terminal of IL-8, has not been fully deliberated at molecular-level. Here, we used a combination of molecular docking, heated and long coarse-grained molecular dynamics simulations to identify key residues of established interaction. Based on heated MD simulation, docked pose of complexes generated by ClusPro showed good binding stability throughout of 70 ns simulation. Based on long molecular dynamic simulations, key residues for the binding were identified throughout of 1000 ns simulation. TYR-53, ASP-99, and ARG-100 of heavy chain CDR together with TYR-33 of light chain CDR are among the highest contributing energy residues within the binding interaction. Meanwhile, LYS11 and TYR13 of IL-8 are important for the determination of overall binding energy. Furthermore, the result of decomposition residues analysis is in good agreement with the interaction analysis data. Current study provides a list of important interacting residues and further scrutiny on these residues is essential for future development and design of a new and stable recombinant antibody against IL-8.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Antibodies, Monoclonal/immunology; Antibodies, Monoclonal/chemistry; Single-Chain Antibodies/immunology; Single-Chain Antibodies/chemistry
  2. Rahumatullah A, Balachandra D, Noordin R, Baharudeen Z, Lim YY, Choong YS, et al.
    Sci Rep, 2021 01 28;11(1):2502.
    PMID: 33510342 DOI: 10.1038/s41598-021-82125-3
    Antibodies have different chemical properties capable of targeting a diverse nature of antigens. Traditionally, immune antibody libraries are perceived to be disease-specific with a skewed repertoire. The complexity during the generation of a combinatorial antibody library allows for a skewed but diverse repertoire to be generated. Strongyloides stercoralis is a parasite that causes strongyloidiasis, a potentially life-threatening disease with a complex diagnosis that impedes effective control and treatment of the disease. This study describes the isolation of monoclonal antibodies against S. stercoralis NIE recombinant protein using an immune antibody phage display library derived from lymphatic filaria-infected individuals. The isolated antibody clones showed both lambda and kappa light chains gene usage, with diverse amino acid distributions. Structural analysis showed that electropositivity and the interface area could determine the binding affinity of the clones with NIE. The successful identification of S. stercoralis antibodies from the filarial immune library highlights the breadth of antibody gene diversification in an immune antibody library that can be applied for closely related infections.
    Matched MeSH terms: Antibodies, Helminth/genetics; Antibodies, Helminth/immunology*; Antibodies, Helminth/isolation & purification; Antibodies, Helminth/chemistry; Antibodies, Monoclonal/genetics; Antibodies, Monoclonal/immunology*; Antibodies, Monoclonal/isolation & purification; Antibodies, Monoclonal/chemistry; Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology*; Single-Chain Antibodies/isolation & purification; Single-Chain Antibodies/chemistry
  3. Chan SW, Ong GI, Nathan S
    J. Biochem. Mol. Biol., 2004 Sep 30;37(5):556-64.
    PMID: 15479619
    A recombinant Fab monoclonal antibody (Fab) C37, previously obtained by phage display and biopanning of a random antibody fragment library against Burkholderia pseudomallei protease, was expressed in different strains of Escherichia coli. E. coli strain HB2151 was deemed a more suitable host for Fab expression than other E. coli strains when grown in media supplemented with 0.2 % glycerol. The expressed Fab fragment was purified by affinity chromatography on a Protein G-Sepharose column, and the specificity of the recombinant Fab C37 towards B. pseudomallei protease was proven by Western blotting, enzyme-linked immunosorbent assay (ELISA) and by proteolytic activity neutralization. In addition, polyclonal antibodies against B. pseudomallei protease were produced in rabbits immunized with the protease. These were isolated from high titer serum by affinity chromatography on recombinant-Protein A-Sepharose. Purified polyclonal antibody specificity towards B. pseudomallei protease was proven by Western blotting and ELISA.
    Matched MeSH terms: Antibodies, Bacterial/genetics; Antibodies, Bacterial/immunology*; Antibodies, Bacterial/isolation & purification; Antibodies, Bacterial/metabolism; Antibodies, Monoclonal/genetics; Antibodies, Monoclonal/immunology*; Antibodies, Monoclonal/isolation & purification; Antibodies, Monoclonal/metabolism
  4. Rahumatullah A, Ahmad A, Noordin R, Lim TS
    Mol Immunol, 2015 Oct;67(2 Pt B):512-23.
    PMID: 26277276 DOI: 10.1016/j.molimm.2015.07.040
    Phage display technology is an important tool for antibody generation or selection. This study describes the development of a scFv library and the subsequent analysis of identified monoclonal antibodies against BmSXP, a recombinant antigen for lymphatic filariasis. The immune library was generated from blood of lymphatic filariasis infected individuals. A TA based intermediary cloning approach was used to increase cloning efficiency for the library construction process. A diverse immune scFv library of 10(8) was generated. Six unique monoclonal antibodies were identified from the 50 isolated clones against BmSXP. Analysis of the clones showed a bias for the IgHV3 and Vκ1 (45.5%) and IgHV2 and Vκ3 (27.3%) gene family. The most favored J segment for light chain is IgKJ1 (45.5%). The most favored D and J segment for heavy chain are IgHD6-13 (75%) and IgHJ3 (47.7%). The information may suggest a predisposition of certain V genes in antibody responses against lymphatic filariasis.
    Matched MeSH terms: Antibodies, Helminth/genetics*; Antibodies, Helminth/immunology*; Antibodies, Monoclonal/immunology; Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology*; Single-Chain Antibodies/chemistry
  5. Rahumatullah A, Abdul Karim IZ, Noordin R, Lim TS
    Int J Mol Sci, 2017 Nov 22;18(11).
    PMID: 29165352 DOI: 10.3390/ijms18112376
    Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
    Matched MeSH terms: Antibodies, Helminth/genetics; Antibodies, Helminth/immunology*; Antibodies, Monoclonal/genetics; Antibodies, Monoclonal/immunology; Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology
  6. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS
    Toxicon, 2016 Jul;117:94-101.
    PMID: 27090555 DOI: 10.1016/j.toxicon.2016.04.032
    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets.
    Matched MeSH terms: Antibodies, Monoclonal/isolation & purification*; Single-Chain Antibodies/immunology*; Single-Chain Antibodies/isolation & purification
  7. Hamidon NH, Suraiya S, Sarmiento ME, Acosta A, Norazmi MN, Lim TS
    Appl Biochem Biotechnol, 2018 Mar;184(3):852-868.
    PMID: 28884285 DOI: 10.1007/s12010-017-2582-5
    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 109 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.
    Matched MeSH terms: Antibodies, Bacterial/immunology*; Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology*
  8. Choong YS, Lee YV, Soong JX, Law CT, Lim YY
    Adv Exp Med Biol, 2017;1053:221-243.
    PMID: 29549642 DOI: 10.1007/978-3-319-72077-7_11
    The use of monoclonal antibody as the next generation protein therapeutics with remarkable success has surged the development of antibody engineering to design molecules for optimizing affinity, better efficacy, greater safety and therapeutic function. Therefore, computational methods have become increasingly important to generate hypotheses, interpret and guide experimental works. In this chapter, we discussed the overall antibody design by computational approches.
    Matched MeSH terms: Antibodies, Monoclonal/adverse effects; Antibodies, Monoclonal/immunology; Antibodies, Monoclonal/therapeutic use*; Antibodies, Monoclonal/chemistry
  9. Chan SK, Lim TS
    Adv Exp Med Biol, 2017;1053:61-78.
    PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4
    The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
    Matched MeSH terms: Antibodies, Monoclonal/biosynthesis; Antibodies, Monoclonal/genetics*; Antibodies, Monoclonal/immunology; Antibodies, Monoclonal/therapeutic use
  10. Sorokin EV, Tsareva TR, Sominina AA, Pisareva MM, Komissarov AV, Kosheleva AA, et al.
    Vopr. Virusol., 2014;59(6):27-31.
    PMID: 25929033
    A panel of five monoclonal antibodies (MAbs) to the HA1 molecule of the influenza B virus of the Victorian lineage with high virus-neutralizing activity was developed. For identification of the virus neutralizing epitopes in HA1 escape mutants (EM) of the influenza BIShandong/07/97 and B/Malaysia/2506/04 virus were selected using virus- neutralizing antibodies (MAbs). Three EMs had single, two--double and one--triple amino acid substitutions (AAS) in HA1 (H122N, A202E, K203T, K2031, K203N or A317V). In addition, AAS N197S was detected in three EMs. A correlation of AAS identified with peculiarities of interaction of EMs with Mabs was discussed.
    Matched MeSH terms: Antibodies, Monoclonal/biosynthesis; Antibodies, Monoclonal/immunology*; Antibodies, Monoclonal/isolation & purification; Antibodies, Viral/biosynthesis; Antibodies, Viral/immunology*; Antibodies, Viral/isolation & purification; Antibodies, Neutralizing/biosynthesis; Antibodies, Neutralizing/immunology*; Antibodies, Neutralizing/isolation & purification
  11. Loh Q, Bahara NH, Choong YS, Lim TS
    Anal Biochem, 2012 Dec 1;431(1):54-6.
    PMID: 22975202 DOI: 10.1016/j.ab.2012.08.025
    The quality of a nucleotide-based library such as a synthetic antibody library is highly dependent on the diversity available. Diversity can be generated using degenerate oligonucleotides introduced during gene assembly. Conventional approaches to gene assembly are not efficient for oligonucleotides with long stretches of degeneracy. We propose an efficient alternative for simultaneous introduction of three randomized regions in a synthetic antibody gene via temperature cascading. The strategy takes advantage of DNA reannealing kinetics. The strategy can be adopted for generating diversity of gene inserts during the construction of nucleotide-based libraries.
    Matched MeSH terms: Antibodies/genetics; Antibodies/metabolism
  12. Cheng HM, Chamley L
    Autoimmun Rev, 2008 Jun;7(6):431-4.
    PMID: 18558357 DOI: 10.1016/j.autrev.2008.03.011
    Natural autoantibodies are normal components of the humoral arm of the immune system found in clinically healthy individuals. There are two subpopulations of natural antibodies, including an overt group of antibodies that are readily detected in unfractionated normal human sera. The other natural antibody subgroup is revealed by physico or biochemical treatment of normal human sera in vitro. Unmasking of this latter cryptic natural autoantibodies (cNA) may occur in vivo by local factors in the tissue environment of disease states. The masking cryptic factors may be immunoglobulin (Ig) or non-Ig in nature. These factors may either be co-inhibitors or co-enhancers of cNA. In the heat-potentiated binding of natural anti-phospholipid antibodies, apolipoprotein H (beta 2-glycoprotein I) appears to act as a co-enhancer. The immuno-relationship between the in vitro and in vivo cNA phenomenon remains to be elucidated.
    Matched MeSH terms: Antibodies, Anticardiolipin/blood; Antibodies, Anticardiolipin/immunology
  13. Chua GK
    Prep Biochem Biotechnol, 2016 Oct 02;46(7):679-85.
    PMID: 26760282 DOI: 10.1080/10826068.2015.1135450
    Statistically designed experiments were used in developing a low-serum medium for the production of a diagnostic monoclonal antibody against congenital adrenal hyperplasia using hybridoma 192. A two-level half-fractional factorial design was used for screening six components (Minimum Essential Medium Eagle amino acids, 2-mercaptoethanol, ethanolamine, ferric citrate, zinc sulfate, and sodium selenite). The experimental design was then augmented to central composite design. The basal Dulbecco's modified Eagle's medium (DMEM; containing 4 mM L-glutamine, 1% antibiotic-antimycotic agent) supplemented with 0.4% by volume fetal bovine serum (FBS), 311.8 mM ferric citrate, 17.3 nM sodium selenite, and 4.5 mM zinc sulfate (LSD) was found to support the growth of the hybridoma. Specific cell growth rate in the LSD (0.033 ± 0.001/h) was slightly lower than in the control medium (i.e., basal DMEM supplemented with 2% FBS; 0.0045 ± 0.003/h). Nevertheless, the specific MAb production rate for LSD was higher (0.057 ± 0.015 pg/cell · h versus 0.004 ± 0.002 pg/cell · h in LSD and control, respectively). The antibody produced in the LSD showed high specificity and no cross-reactivity with the other structural resemblance's steroid hormones, revealing no structural changes owing to the new medium formulation developed. The new medium formulation effectively reduced the medium cost by up to 64.6%.
    Matched MeSH terms: Antibodies, Monoclonal/biosynthesis*; Antibodies, Monoclonal/immunology
  14. Khor BY, Lim TS, Noordin R, Choong YS
    J Mol Graph Model, 2017 09;76:543-550.
    PMID: 28811153 DOI: 10.1016/j.jmgm.2017.07.004
    De novo approach was applied to design single chain fragment variable (scFv) for BmR1, a recombinant antigen from Bm17DIII gene which is the primary antigen used for the detection of anti-BmR1 IgG4 antibodies in the diagnostic of lymphatic filariasis. Three epitopes of the BmR1 was previously predicted form an ab initio derived three-dimensional structure. A collection of energetically favourable conformations was generated via hot-spot-centric approach. This resulted in a set of three different scFv scaffolds used to compute the high shape complementary conformations via dock-and-design approach with the predicted epitopes of BmR1. A total of 4227 scFv designs were generated where 200 scFv designs produced binding energies of less than -20 R.E.U with shape complementarity higher than 0.5. We further selected the design with at least one hydrogen bond and one salt bridge with the epitope, thus resulted in a total of 10, 1 and 19 sFv designs for epitope 1, 2 and 3, respectively. The results thus showed that de novo design can be an alternative approach to yield high affinity in silico scFv designs as a starting point for antibody or specific binder discovery processes.
    Matched MeSH terms: Single-Chain Antibodies/immunology; Single-Chain Antibodies/chemistry*
  15. Zeehaida M, Zairi NZ, Tan ZN, Wong WK, Lim BH
    Trop Biomed, 2009 Dec;26(3):366-8.
    PMID: 20237453
    The screening for anti-amoebic antibody among a group of donors was to obtain negative control serum samples for an on-going antigen development assay in diagnosis of amoebic liver abscess. Out of 200 samples, 125 (62.5%) were negative, whereas 44 (21.5%) had IHA titer of less than 1:128 and 31 (16.0%) of the samples had significant IHA titers of 1:128 or more, in which 2 serum samples gave titers of 1:4096.
    Matched MeSH terms: Antibodies, Protozoan/blood*; Antibodies, Protozoan/immunology
  16. Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH
    Virus Res, 2023 Jan 15;324:199018.
    PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018
    The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
    Matched MeSH terms: Antibodies, Viral/therapeutic use; Antibodies, Neutralizing
  17. Camacho F, Sarmiento ME, Reyes F, Kim L, Huggett J, Lepore M, et al.
    Int J Mycobacteriol, 2016 06;5(2):120-7.
    PMID: 27242221 DOI: 10.1016/j.ijmyco.2015.12.002
    OBJECTIVE/BACKGROUND: The development of new tools capable of targeting Mycobacterium tuberculosis (Mtb)-infected cells have potential applications in diagnosis, treatment, and prevention of tuberculosis. In Mtb-infected cells, CD1b molecules present Mtb lipids to the immune system (Mtb lipid-CD1b complexes). Because of the lack of CD1b polymorphism, specific Mtb lipid-CD1b complexes could be considered as universal Mtb infection markers. 2-Stearoyl-3-hydroxyphthioceranoyl-2'-sulfate-α-α'-d-trehalose (Ac2SGL) is specific for Mtb, and is not present in other mycobacterial species. The CD1b-Ac2SGL complexes are expressed on the surface of human cells infected with Mtb. The aim of this study was to generate ligands capable of binding these CD1b-Ac2SGL complexes.

    METHODS: A synthetic human scFv phage antibody library was used to select phage-displayed antibody fragments that recognized CD1b-Ac2SGL using CD1b-transfected THP-1 cells loaded with Ac2SGL.

    RESULTS: One clone, D11-a single, light-variable domain (kappa) antibody (dAbκ11)-showed high relative binding to the Ac2SGL-CD1b complex.

    CONCLUSION: A ligand recognizing the Ac2SGL-CD1b complex was obtained, which is a potential candidate to be further tested for diagnostic and therapeutic applications.

    Matched MeSH terms: Antibodies, Bacterial/genetics; Antibodies, Bacterial/immunology*; Single-Chain Antibodies/genetics*; Single-Chain Antibodies/immunology
  18. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T
    Biosens Bioelectron, 2014 Jul 15;57:292-302.
    PMID: 24607580 DOI: 10.1016/j.bios.2014.02.029
    Sensing applications can be used to report biomolecular interactions in order to elucidate the functions of molecules. The use of an analyte and a ligand is a common set-up in sensor development. For several decades, antibodies have been considered to be potential analytes or ligands for development of so-called "immunosensors." In an immunosensor, formation of the complex between antibody and antigen transduces the signal, which is measurable in various ways (e.g., both labeled and label-free based detection). Success of an immunosensor depends on various factors, including surface functionalization, antibody orientation, density of the antibody on the sensor platform, and configuration of the immunosensor. Careful optimization of these factors can generate clear-cut results for any immunosensor. Herein, current aspects, involved in the generated immunosensors, are discussed.
    Matched MeSH terms: Antibodies/immunology; Antibodies/chemistry; Antibodies, Immobilized/immunology; Antibodies, Immobilized/chemistry*
  19. Lee WS, Teh CM, Chan LL
    J Paediatr Child Health, 2005 May-Jun;41(5-6):265-8.
    PMID: 15953326 DOI: 10.1111/j.1440-1754.2005.00608.x
    OBJECTIVES: To estimate the risks of seroconversion of hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency viruses (HIV) in children with multitransfused thalassaemia at a thalassaemic clinic in Kuala Lumpur, Malaysia.
    METHODS: Seventy-two children (39 males, median age 11.3 years, 2.5th-97.5th centile: 1.4-19.2 years) with thalassaemia major were studied. The risks of seroconversion of HBV, HCV and HIV were estimated by comparing the seroprevalences of hepatitis B surface antigen (HBsAg), anti-HCV and anti-HIV between a defined starting point and an end point. The end point was the point when latest serological results were available while the starting point was when regular transfusion was commenced, or approximately 5 years before the end point when the duration of transfusion was longer.
    RESULTS: The median duration of the study was 49 months (range 8-69 months, total 2953 patient-months). There were 2605 transfusion episodes and 4154 units of blood transfused (0.88 transfusion episode/patient per month, 1.41 units of blood transfused/patient per month). There were three new seroconversions for anti-HCV but none for HBsAg and anti-HIV. The risk of seroconversion for HCV was one in 1384 units of blood transfused (95% CI: 4000-472). The seroprevalence rates at the starting and end points were: HBsAg (1%, 1%), anti-HCV (10%, 13%) and anti-HIV (0%, 0%), respectively.
    CONCLUSIONS: The estimated risk of acquiring HCV infection in children receiving multiple blood transfusions in this study is surprisingly higher than the generally accepted estimated risk. Other routes of transmission may be important. A prospective, multicentre study to estimate such risks more precisely is needed.
    Matched MeSH terms: Hepatitis B Antibodies/blood*; HIV Antibodies/blood*; Hepatitis C Antibodies/blood*
  20. Lai JY, Lim TS
    Int J Biol Macromol, 2020 Nov 15;163:640-648.
    PMID: 32650013 DOI: 10.1016/j.ijbiomac.2020.06.268
    Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
    Matched MeSH terms: Antibodies/immunology*; Antibodies, Monoclonal/immunology; Single-Domain Antibodies/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links