The structural, thermal, linear, and femtosecond third-order nonlinear optical (NLO) properties of two pyridine-based anthracene chalcones, (2E)-1-(anthracen-9-yl)-3-(pyridin-2-yl)prop-2-en-1-one (2PANC) and (2E)-1-(anthracen-9-yl)-3-(pyridin-3-yl)prop-2-en-1-one (3PANC), were investigated. These two chalcones were synthesized following the Claisen-Schmidt condensation method. Optically transparent single crystals were achieved using a slow evaporation solution growth technique. The presence of functional groups in these molecules was established by Fourier transform infrared and NMR spectroscopic data. The detailed solid-state structure of both chalcones was determined from the single-crystal X-ray diffraction data. Both crystals crystallized in the centrosymmetric triclinic space group P1̅ with the nuance of unit cell parameters. The crystals (labeled as 2PANC and 3PANC) have been found to be transparent optically [in the entire visible spectral region] and were found to be thermally stable up to 169 and 194 °C, respectively. The intermolecular interactions were investigated using the Hirshfeld surface analysis, and the band structures (highest occupied molecular orbital-lowest unoccupied molecular orbital, excited-state energies, global chemical reactivity descriptors, and molecular electrostatic potentials) were studied using density functional theory (DFT) techniques. The ultrafast third-order NLO properties were investigated using (a) Z-scan and (b) degenerate four-wave mixing (DFWM) techniques using ∼50 fs pulses at 800 nm (1 kHz, ∼4 mJ) from a Ti:sapphire laser amplifier. Two-photon-assisted reverse saturable absorption, self-focusing nonlinear refraction, optical limiting, and optical switching behaviors were witnessed from the Z-scan data. 3PANC demonstrated a stronger two-photon absorption coefficient, while 2PANC depicted a stronger nonlinear refractive index among the two. The time-resolved DFWM data demonstrated that the decay times of 2PANC and 3PANC were ∼162 and ∼180 fs, respectively. The second hyperpolarizability (γ) values determined by DFT, Z-scan, and DFWM were found to be in good correlation (with a magnitude of ∼10-34 esu). The ultrafast third-order NLO response, significant NLO properties, and thermal stability of these chalcones brands them as potential candidates for optical power limiting and switching applications.
With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.