Displaying publications 21 - 35 of 35 in total

Abstract:
Sort:
  1. Takahashi K, Hirose Y, Kamimura N, Hishiyama S, Hara H, Araki T, et al.
    Appl Environ Microbiol, 2015 Dec;81(23):8022-36.
    PMID: 26362985 DOI: 10.1128/AEM.02391-15
    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (-)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain.
    Matched MeSH terms: Flavin-Adenine Dinucleotide
  2. Zulhabri O, Rahman J, Ismail S, Isa MR, Wan Zurinah WN
    Singapore Med J, 2012 Jan;53(1):26-31.
    PMID: 22252179
    K-ras gene mutations in codons 12 and 13 are one of the earliest events in colon carcinogenesis.
    Matched MeSH terms: Adenine/chemistry*
  3. Boettiger DC, Saphonn V, Lee MP, Phanuphak P, Pham TT, Heng Sim BL, et al.
    J Acquir Immune Defic Syndr, 2014 Dec 01;67(4):e131-3.
    PMID: 25197829 DOI: 10.1097/QAI.0000000000000338
    Matched MeSH terms: Adenine/analogs & derivatives*
  4. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF
    Biomed Pharmacother, 2008 Jun;62(5):328-32.
    PMID: 17988826
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of cyclic AMP (cAMP) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of adenylyl cyclase inhibitor (SQ22536), NO scavenger (carboxy PTIO) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NIO), was assessed by adding these to the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody prior to culturing on HA surfaces with or without the presence of SNAP. The levels of cAMP and cGMP were determined from the 3-day culture supernatants. The results showed that the production of cAMP but not cGMP by HA-stimulated HOS cells was augmented by SNAP. SQ22536 and carboxy PTIO suppressed but L-NIO only partially inhibited the production of cAMP by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody suppressed the production of cAMP by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of cAMP, perhaps, by augmenting adenylyl cyclase activity initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: Adenine/analogs & derivatives; Adenine/pharmacology
  5. Ip YK, Kuah SS, Chew SF
    Physiol Biochem Zool, 2004 Sep-Oct;77(5):824-37.
    PMID: 15547800
    The effects of sulfide on the energy metabolism of Boleophthalmus boddaerti in normoxia and hypoxia were examined. The 24-, 48-, and 96-h LC50 values of sulfide for B. boddaerti with body weight ranging from 11.6 to 14.2 g were 0.786, 0.567, and 0.467 mM, respectively. The tolerance of B. boddaerti to sulfide was not due to the presence of a sulfide-insensitive cytochrome c oxidase. There was no accumulation of lactate in the muscle and liver of specimens exposed to sulfide in normoxia. In addition, the levels of ATP, AMP, and energy charge in both the muscle and the liver were unaffected. These results indicate that B. boddaerti was able to sustain the energy supply required for its metabolic needs via mainly aerobic respiration when exposed to sulfide (up to 0.4 mM) in normoxia. Exposure of B. boddaerti simultaneously to hypoxia and 0.2 mM sulfide for 48 h resulted in decreases in the ATP levels in the muscle and liver. However, the energy charge in both tissues remained unchanged, and the level of lactate accumulated in the muscle was too low to have any major contribution to the energy budget of the fish. Our results reveal that B. boddaerti possesses inducible mechanisms to detoxify sulfide in an ample supply or a lack of O2. In normoxia, it detoxified sulfide to sulfate, sulfite, and thiosulfate. There were significant increases in the activities of sulfide oxidase in the muscle and liver of specimens exposed to sulfide, with that in the liver being >13-fold higher than that in the muscle. However, in hypoxia, sulfide oxidase activity in the liver was suppressed in response to environmental sulfide. In such conditions, there were significant increases in the activities of sulfane sulfur-forming enzyme(s) in the muscle and liver that were not observed in specimens exposed to sulfide in normoxia. Correspondingly, there were no changes in the levels of sulfate or sulfite in the muscle or liver. Instead, B. boddaerti detoxified sulfide mainly to sulfane sulfur in hypoxia. In conclusion, B. boddaerti was able to activate different mechanisms to detoxify sulfide, producing different types of detoxification products in normoxia and hypoxia.
    Matched MeSH terms: Adenine Nucleotides/metabolism
  6. Naing C, Poovorawan Y, Tong KS
    BMC Infect Dis, 2018 Nov 14;18(1):564.
    PMID: 30428847 DOI: 10.1186/s12879-018-3506-x
    BACKGROUND: There are randomized trials assessing a variety of antiviral drugs for hepatitis B virus (HBV), but the relative effectiveness of these drugs in the treatment of patients co-infected with human immunodeficiency virus (HIV) remains unclear. The objectives of the current study were to estimate and rank the relative effectiveness of antiviral drugs for treating HBV and HIV co-infected patients.

    METHODS: Randomized trials, assessing the efficacy of antiviral drugs for HBV and HIV co-infected patients were searched in health-related databases. The methodological quality of the included trials was evaluated using the Cochrane risk of bias tool. Main outcome in this meta-analysis study was the success of treatment by antivirals as determined by virologic response. We performed pairwise and network meta-analysis of these trials and assessed the quality of evidence using the GRADE approach.

    RESULTS: Seven randomized trials (329 participants) were included in this network meta-analysis study. A network geometry was formed with six treatment options including four antiviral drugs, adefovir (ADV), emtricitabine (FTC), lamivudine (LMV) and tenofovir disoproxil fumarate (TDF), combination treatment of TDF plus LMV, and placebo. The weighted percentage contributions of each comparison distributed fairly equally in the entire network of evidence. An assumption of consistency required for network meta-analysis was not violated (the global Wald test for inconsistency: Chi2(4) = 3.63, p = 0.46). The results of estimates showed no differences between the treatment regimens in terms of viral response for treating HBV and HIV co-infected patients, which spanned both benefit and harm (e.g. LMV vs TDF plus LMV: OR: 0.37, 95%CI: 0.06-2.41). Overall, the certainty of evidence was very low in all comparisons (e.g. LMV vs TDF plus LMV: 218 fewer per 1000,121 more to 602 fewer, very low certainty). Therefore, we remained uncertain to the true ranking of the antiviral treatments in HBV/ HIV co-infected patients.

    CONCLUSIONS: The findings suggest that the evidence is insufficient to provide guidance to the relative effectiveness of currently available antiviral drugs with dual activity in treating co-infection of HBV/HIV. Well-designed, large clinical trials in this field to address other important outcomes from different epidemiological settings are recommended.

    Matched MeSH terms: Adenine/analogs & derivatives
  7. Liu BH, Chong FL, Yuan CC, Liu YL, Yang HM, Wang WW, et al.
    Front Pharmacol, 2020;11:586725.
    PMID: 33708111 DOI: 10.3389/fphar.2020.586725
    Background: Recently, chronic kidney disease (CKD)-mineral and bone disorder (MBD) has become one of common complications occurring in CKD patients. Therefore, development of a new treatment for CKD-MBD is very important in the clinic. In China, Fucoidan (FPS), a natural compound of Laminaria japonica has been frequently used to improve renal dysfunction in CKD. However, it remains elusive whether FPS can ameliorate CKD-MBD. FGF23-Klotho signaling axis is reported to be useful for regulating mineral and bone metabolic disorder in CKD-MBD. This study thereby aimed to clarify therapeutic effects of FPS in the CKD-MBD model rats and its underlying mechanisms in vivo and in vitro, compared to Calcitriol (CTR). Methods: All male rats were divided into four groups: Sham, CKD-MBD, FPS and CTR. The CKD-MBD rat models were induced by adenine administration and uninephrectomy, and received either FPS or CTR or vehicle after induction of renal injury for 21 days. The changes in parameters related to renal dysfunction and renal tubulointerstitial damage, calcium-phosphorus metabolic disorder and bone lesion were analyzed, respectively. Furthermore, at sacrifice, the kidneys and bone were isolated for histomorphometry, immunohistochemistry and Western blot. In vitro, the murine NRK-52E cells were used to investigate regulative actions of FPS or CTR on FGF23-Klotho signaling axis, ERK1/2-SGK1-NHERF-1-NaPi-2a pathway and Klotho deficiency. Results: Using the modified CKD-MBD rat model and the cultured NRK-52E cells, we indicated that FPS and CTR alleviated renal dysfunction and renal tubulointerstitial damage, improved calcium-phosphorus metabolic disorder and bone lesion, and regulated FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. In addition, using the shRNA-Klotho plasmid-transfected cells, we also detected, FPS accurately activated ERK1/2-SGK1-NHERF-1-NaPi-2a pathway through Klotho loss reversal. Conclusion: In this study, we emphatically demonstrated that FPS, a natural anti-renal dysfunction drug, similar to CTR, improves renal injury-related calcium-phosphorus metabolic disorder and bone abnormality in the CKD-MBD model rats. More importantly, we firstly found that beneficial effects in vivo and in vitro of FPS on phosphorus reabsorption are closely associated with regulation of FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. This study provided pharmacological evidences that FPS directly contributes to the treatment of CKD-MBD.
    Matched MeSH terms: Adenine
  8. Charlton MR, Alam A, Shukla A, Dashtseren B, Lesmana CRA, Duger D, et al.
    J Gastroenterol, 2020 Sep;55(9):811-823.
    PMID: 32666200 DOI: 10.1007/s00535-020-01698-4
    Asia has intermediate-to-high prevalence and high morbidity of hepatitis B virus (HBV) infection. The use of guideline-recommended nucleos(t)ide analogs with high barrier to resistance, such as entecavir (ETV), tenofovir disoproxil fumarate (TDF), and tenofovir alafenamide (TAF), is one of the key interventions for curbing HBV infection and associated morbidity in Asia. However, there are some challenges to the use of ETV and TDF; while ETV is associated with high resistance in lamivudine (LAM)-exposed (especially LAM-refractory) patients; bone and renal safety issues are a major concern with TDF. Hence, a panel of twenty-eight expert hepatologists from Asia convened, reviewed the literature, and developed the current expert opinion-based review article for the use of TAF in the resource-constrained settings in Asia. This article provides a comprehensive review of two large, phase 3, double-blind, randomized controlled trials of TAF versus TDF in HBeAg-negative (study 0108) and HBeAg-positive (study 0110) chronic HBV patients (> 70% Asians). These studies revealed as follows: (1) non-inferiority for the proportion of patients who had HBV DNA 
    Matched MeSH terms: Adenine
  9. Rosli H, Shahar S, Rajab NF, Che Din N, Haron H
    Nutr Neurosci, 2021 Mar 05.
    PMID: 33666540 DOI: 10.1080/1028415X.2021.1880312
    Objectives: Polyphenols, particularly anthocyanins, have received attention in improving health issues during old age, including decline in cognitive function and other health parameters. We aimed to determine the effects of polyphenols-rich tropical fruit TP 3-in-1™ juice towards improving cognitive function, oxidative stress and metabolomics profiles among middle-aged women.Methods: This clinical trial involved 31 subjects with signs of poor cognitive function, as assessed using the Rey Auditory Verbal Learning Test (RAVLT). They were randomized to receive either TP 3-in-1™ juice (n = 16) or placebo (n = 15). Study subjects consumed 500 ml of beverages for three times per day, three days per week, for a period of ten weeks. Juice supplementation provided 9135 mg GAE of total phenolic content and 194.1 mg cyanidin-3-glucoside of total anthocyanin monomer.Results: There was a significant interaction effects on RAVLT immediate recall (p 
    Matched MeSH terms: Adenine
  10. Chan KL
    Hum. Hered., 1971;21(2):173-9.
    PMID: 5127408
    Matched MeSH terms: Adenine Nucleotides
  11. Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R
    SAGE Open Med, 2018;6:2050312118781962.
    PMID: 30034805 DOI: 10.1177/2050312118781962
    Objectives: To synthesize novel compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin classes and test their potential anticancer properties.

    Methods: Several compounds were synthesized and their molecular identity was confirmed using nuclear magnetic resonance. Potential anticancer properties were determined using cytopathogenicity assays and growth inhibition assays using cervical cancer cells (HeLa). Cells were incubated with different concentrations of compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins and effects were determined. HeLa cells cytopathogenicity was determined by measuring lactate dehydrogenase release using cytotoxicity detection assay. Growth inhibition assays were performed by incubating 50% semi-confluent HeLa cells with Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin compounds and HeLa cell proliferation was observed. Growth inhibition and host cell death were compared in the presence and absence of drugs.

    Results: Cytopathogenicity assays showed that the selected compounds were cytotoxic against HeLa cells, killing up to 90% of cells. Growth inhibition assays exhibited 100% growth inhibition. These effects are likely via oxidative stress, production of reactive oxygen species, changes in cytosolic and intracellular calcium/adenine nucleotide homeostasis, inhibition of ribonucleotide reductase/cyclooxygenase and/or glutathione depletion.

    Conclusions: Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins exhibited potent anticancer properties. These findings are promising and should pave the way in the rationale development of anticancer drugs. Using different cancer cell lines, future studies will determine their potential as anti-tumour agents as well as their precise molecular mode of action.

    Matched MeSH terms: Adenine Nucleotides
  12. Bao R, Liu M, Wang D, Wen S, Yu H, Zhong Y, et al.
    Front Pharmacol, 2019;10:1464.
    PMID: 31920654 DOI: 10.3389/fphar.2019.01464
    Background:Eurycoma longifolia is a tropical medicinal plant belonging to Simaroubaceae distributed in South East Asia. The stems are traditionally used for the treatment of sexual insufficiency, fever, hypertension, and malaria. Furthermore, it has antidiabetic and anticancer activities. Recently, it has been reported to reduce uric acid, but the mechanism is unclear. Hypothesis/Purpose: The aim of this study is to explore the effect and mechanism of E. longifolia stem 70% ethanol extract (EL) and its active compounds on uric acid excretion. Study Design and Methods: Potassium oxonate (PO) induced hyperuricemia rats model and adenine-PO induced hyperuricemia mice model were used to evaluate the effects of EL. Ultraperformance liquid chromatography was used to determine the levels of plasma or serum uric acid and creatinine. Hematoxylin-eosin staining was applied to observe kidney pathological changes, and western blot was applied to detect protein expression levels of uric acid transporters. Effects of constituents on urate uptake were tested in hURAT1-expressing HEK293T cells. Results: EL significantly reduced serum and plasma uric acid levels at dosages of 100, 200, and 400 mg/kg in hyperuricemia rats and mice, increased the clearance rate of uric acid and creatinine, and improved the renal pathological injury. The protein expression levels of urate reabsorption transporter 1 (URAT1) and glucose transporter 9 were down-regulated, while sodium-dependent phosphate transporter 1 and ATP-binding cassette transporter G2 were up-regulated in the kidney after EL treatment. The quassinoids isolated from EL showed inhibitory effects on urate uptake in hURAT1-expressing HEK293T cells, and the effect of eurycomanol was further confirmed in vivo. Conclusion: Our findings revealed that EL significantly reduced blood uric acid levels, prevented pathological changes of kidney in PO induced hyperuricemia animal model, and improved renal urate transports. We partly clarified the mechanism was related to suppressing effect of URAT1 by quassinoid in EL. This study is the first to demonstrate that EL plays a role in hyperuricemia by promoting renal uric acid excretion.
    Matched MeSH terms: Adenine
  13. Norlina R, Norashikin MN, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2020 Aug;191(4):1653-1669.
    PMID: 32198601 DOI: 10.1007/s12010-020-03312-y
    Abscisic acid (ABA) has been known to exist in a microalgal system and serves as one of the chemical stimuli in various biological pathways. Nonetheless, the involvement of ABA in fatty acid biosynthesis, particularly at the transcription level in microalgae is poorly understood. The objective of this study was to determine the effects of exogenous ABA on growth, total oil content, fatty acid composition, and the expression level of beta ketoacyl-ACP synthase I (KAS I) and omega-3 fatty acid desaturase (ω-3 FAD) genes in Chlorella vulgaris UMT-M1. ABA was applied to early stationary C. vulgaris cultures at concentrations of 0, 10, 20, and 80 μM for 48 h. The results showed that ABA significantly increased biomass production and total oil content. The increment of palmitic (C16:0) and stearic (C18:0) acids was coupled by decrement in linoleic (C18:2) and α-linolenic (C18:3n3) acids. Both KAS I and ω-3 FAD gene expression were downregulated, which was negatively correlated to saturated fatty acid (SFAs), but positively correlated to polyunsaturated fatty acid (PUFA) accumulations. Further analysis of both KAS I and ω-3 FAD promoters revealed the presence of multiple ABA-responsive elements (ABREs) in addition to other phytohormone-responsive elements. However, the role of these phytohormone-responsive elements in regulating KAS I and ω-3 FAD gene expression still remains elusive. This revelation might suggest that phytohormone-responsive gene regulation in C. vulgaris and microalgae as a whole might diverge from higher plants which deserve further scientific research to elucidate its functional roles.
    Matched MeSH terms: Flavin-Adenine Dinucleotide
  14. Wu W, Jafri M Abdullah, Faizul H Ghazali
    Sains Malaysiana, 2016;45:1641-1648.
    Motor vehicle accidents are the most common cause of injuries involving avulsion of the brachial plexus in humans,
    resulting in debilitating motor dysfunction. Lack of an established animal model to test drug treatments hinders
    the introduction of new pharmacological agents. Avulsion injury of cervical ventral roots can be replicated in rats,
    resulting in a progressive loss of the motoneurons and increase in neurotoxic expression of microglia. This is a report
    on the effect of prompt nerve implantation and minocycline treatment on the suppression of microglia activation and
    survival of motoneurons. 20 adult female Sprague-Dawley rats were used for this study, which was approved by the
    Animal Ethical Committee, USM (approval number /2011/(73)(346)). The animals underwent surgical avulsion of the
    C6 nerve root, followed by reimplantation with peripheral nerve graft and treatment with intraperitoneal minocycline.
    At 6 weeks postoperatively, immunohistochemistry using primary antibody Iba1 (microglia) and nicotinamide adenine
    dinucleotide phosphate diaphorase (NADPh) with neutral-red staining (motoneuron) under flourescence microscopy
    was performed at the C6 spinal cord segment and then quantified. This study showed significant reduction of microglia
    expression in the study group; mean ranks of control and study group were 15.2 and 11.6, respectively; U=9.5, Z=3.02,
    p<0.05. However, this did not translate into a significant increase of motoneuron survival in the combined group;
    the mean ranks of control and study group were 40.6 and 41.6, respectively; U=44.5, Z=-.0378, p>0.05. This may
    be due to the effect of the surgery; the surgery has the potential to cause additional trauma to the cord parenchyma,
    leading to further motoneuron loss and an increase in scarring around the avulsed region, thus impeding regeneration
    of the motoneuron.
    Matched MeSH terms: Adenine
  15. Kang IN, Musa M, Harun F, Junit SM
    Biochem Genet, 2010 Feb;48(1-2):141-51.
    PMID: 20094846 DOI: 10.1007/s10528-009-9306-7
    The FOXE1 gene was screened for mutations in a cohort of 34 unrelated patients with congenital hypothyroidism, 14 of whom had thyroid dysgenesis and 18 were normal (the thyroid status for 2 patients was unknown). The entire coding region of the FOXE1 gene was PCR-amplified, then analyzed using single-stranded conformational polymorphism, followed by confirmation by direct DNA sequencing. DNA sequencing analysis revealed a heterozygous A>G transition at nucleotide position 394 in one of the patients. The nucleotide transition changed asparagine to aspartate at codon 132 in the highly conserved region of the forkhead DNA binding domain of the FOXE1 gene. This mutation was not detected in a total of 104 normal healthy individuals screened. The binding ability of the mutant FOXE1 protein to the human thyroperoxidase (TPO) promoter was slightly reduced compared with the wild-type FOXE1. The mutation also caused a 5% loss of TPO transcriptional activity.
    Matched MeSH terms: Adenine
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links