Displaying publications 21 - 40 of 545 in total

Abstract:
Sort:
  1. Wu X, Zhang Y, Feng X
    Mar Pollut Bull, 2023 Jul;192:115067.
    PMID: 37269704 DOI: 10.1016/j.marpolbul.2023.115067
    As the division of work within the world economic system becomes increasingly complex, the impact of disturbing events on the economic system is expanding. Recently, Japan proposed to discharge nuclear wastewater into the Pacific Ocean, which will cause damage to marine fisheries, thereby seriously affecting fisheries and other industries in Japan and other countries and regions around the world. Considering different scenarios of final and intermediate demand shifting, this paper uses the Inoperability Input-Output Model (IIM) and Multi-Region Input-Output Model (MRIO) to simulate the economic consequences of nuclear wastewater discharge in Japan and calculate the economic changes of each industry and country (region). The results show that: In the short term, when only the final demand for Japanese fishery products decreases. (1) The ten countries (regions) with significant economic losses are Japan, the United States, Chinese Taipei, Canada, Chile, South Africa, Mexico, Peru, the United Kingdom, and Ireland. (2) The ten countries (regions) with a significant increase in total output due to demand shift are China (People's Republic of), the Rest of the World, India, Indonesia, Viet Nam, the Philippines, Brazil, Myanmar, the Russian Federation, and Malaysia. (3) A ranking of changes in the total output of different industries. In the long term, when both intermediate and final demand for Japanese fishery products decrease. (4) The change in value added in Japan. (5) The change in value added of 67 countries (regions) worldwide. The ten countries (regions) with the most significant increase in value-added are the Russian Federation, China (People's Republic of), the Rest of the World, the United States, Indonesia, Australia, Norway, Korea, Viet Nam, and Myanmar. The ten countries (regions) with the most significant decrease in value-added are Japan, Chinese Taipei, Chile, South Africa, Peru, Thailand, Mexico, Cambodia, Costa Rica, and Morocco. Changes in value added of 45 industrial sectors worldwide.
    Matched MeSH terms: Waste Water*
  2. Li B, Amin AH, Ali AM, Isam M, Lagum AA, Sabugaa MM, et al.
    Chemosphere, 2023 Sep;336:139208.
    PMID: 37321458 DOI: 10.1016/j.chemosphere.2023.139208
    UV and solar-based photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) as an organic contaminant in ceramics industry wastewater by ZnS and Fe-doped ZnS NPs was the focus of this research. Nanoparticles were prepared using a chemical precipitation process. The cubic, closed-packed structure of undoped ZnS and Fe-doped ZnS NPs was formed in spherical clusters, according to XRD and SEM investigations. According to optical studies, the optical band gaps of pure ZnS and Fe-doped ZnS nanoparticles are 3.35 and 2.51 eV, respectively, and Fe doping increased the number of carriers with high mobility, improved carrier separation and injection efficiency, and increased photocatalytic activity under UV or visible light. Doping of Fe increased the separation of photogenerated electrons and holes and facilitated charge transfer, according to electrochemical impedance spectroscopy investigations. Photocatalytic degradation studies revealed that in the present pure ZnS and Fe-doped ZnS nanoparticles, 100% treatment of 120 mL of 15 mg/L phenolic compound was obtained after 55- and 45-min UV-irradiation, respectively, and complete treatment was attained after 45 and 35-min solar light irradiation, respectively. Because of the synergistic effects of effective surface area, more effective photo-generated electron and hole separation efficiency, and enhanced electron transfer, Fe-doped ZnS demonstrated high photocatalytic degradation performance. The study of Fe-doped ZnS's practical photocatalytic treatment capability for removing 120 mL of 10 mg/L 2,4-DCP solution made from genuine ceramic industrial wastewater revealed Fe-doped ZnS's excellent photocatalytic destruction of 2,4-DCP from real industrial wastewater.
    Matched MeSH terms: Waste Water*
  3. Usman J, Salami BA, Gbadamosi A, Adamu H, Usman AG, Benaafi M, et al.
    Chemosphere, 2023 Aug;331:138726.
    PMID: 37116721 DOI: 10.1016/j.chemosphere.2023.138726
    Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models' performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.
    Matched MeSH terms: Waste Water*
  4. Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H
    Environ Res, 2023 Jul 01;228:115919.
    PMID: 37072081 DOI: 10.1016/j.envres.2023.115919
    The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
    Matched MeSH terms: Waste Water*
  5. Isa EDM, Jusoh NWC, Rodzi AAM
    Environ Sci Pollut Res Int, 2023 Nov;30(55):116921-116933.
    PMID: 37178288 DOI: 10.1007/s11356-023-27576-z
    The scarcity of water leads to research nowadays to focus on techniques for treating wastewater. Photocatalysis emerged as a technique of interest due to its nature of friendliness. It utilizes light and catalyst to degrade the pollutants. One of the popular catalysts to be used is zinc oxide (ZnO), but its usage is limited due to the high recombination rate of electron-hole pair. Herein, in this study, ZnO is modified with graphitic carbon nitride (GCN), and the GCN loading amount was varied to study the impact on photocatalytic degradation of mixed dye solution. To the best of our knowledge, this is the first work that reports on the degradation of mixed dye solution using modified ZnO with GCN. Structural analysis showed that GCN is present in the composites which proves the success of the modification. Photocatalytic activity revealed that the composite with 5 wt% loading of GCN showed the best activity at a catalyst dosage of 1 g/L with degradation rates of 0.0285, 0.0365, 0.0869, and 0.1758 min-1 for methyl red, methyl orange, rhodamine B, and methylene blue dyes, respectively. This observation is expected due to the formation of heterojunction between ZnO and GCN which creates a synergistic effect and thus led to an improvement in the photocatalytic activity. Based on these results, ZnO modified with GCN has a good potential to be used in the treatment of textile wastewater which consists of various dye mixtures.
    Matched MeSH terms: Waste Water*
  6. Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, et al.
    Int J Environ Res Public Health, 2020 Nov 11;17(22).
    PMID: 33187288 DOI: 10.3390/ijerph17228339
    Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
    Matched MeSH terms: Waste Water/analysis
  7. Alavi J, Ewees AA, Ansari S, Shahid S, Yaseen ZM
    Environ Sci Pollut Res Int, 2022 Mar;29(14):20496-20516.
    PMID: 34741267 DOI: 10.1007/s11356-021-17190-2
    Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
    Matched MeSH terms: Waste Water*
  8. Omoregie AI, Alhassan M, Basri HF, Muda K, Campos LC, Ojuri OO, et al.
    Environ Sci Pollut Res Int, 2024 Aug;31(38):50098-50125.
    PMID: 39102140 DOI: 10.1007/s11356-024-34550-w
    Inadequate management and treatment of wastewater pose significant threats, including environmental pollution, degradation of water quality, depletion of global water resources, and detrimental effects on human well-being. Biogranulation technology has gained increasing traction for treating both domestic and industrial wastewater, garnering interest from researchers and industrial stakeholders alike. However, the literature lacks comprehensive bibliometric analyses that examine and illuminate research hotspots and trends in this field. This study aims to elucidate the global research trajectory of scientific output in biogranulation technology from 1992 to 2022. Utilizing data from the Scopus database, we conducted an extensive analysis, employing VOSviewer and the R-studio package to visualize and map connections and collaborations among authors, countries, and keywords. Our analysis revealed a total of 1703 journal articles published in English. Notably, China emerged as the leading country, Jin Rencun as the foremost author, Bioresource Technology as the dominant journal, and Environmental Science as the prominent subject area, with the Harbin Institute of Technology leading in institutional contributions. The most prominent author keyword identified through VOSviewer analysis was "aerobic granular sludge," with "sequencing batch reactor" emerging as the dominant research term. Furthermore, our examination using R Studio highlighted "wastewater treatment" and "sewage" as notable research terms within the field. These findings underscore a diverse research landscape encompassing fundamental aspects of granule formation, reactor design, and practical applications. This study offers valuable insights into biogranulation potential for efficient wastewater treatment and environmental remediation, contributing to a sustainable and cleaner future.
    Matched MeSH terms: Waste Water*
  9. Zhang J, Noor ZZ, Baharuddin NH, Setu SA, Mohd Hamzah MAA, Zakaria ZA
    Curr Microbiol, 2024 Aug 19;81(10):312.
    PMID: 39155344 DOI: 10.1007/s00284-024-03832-4
    Industrial and urban modernization processes generate significant amounts of heavy metal wastewater, which brings great harm to human production and health. The biotechnology developed in recent years has gained increasing attention in the field of wastewater treatment due to its repeatable regeneration and lack of secondary pollutants. Pseudomonas, being among the several bacterial biosorbents, possesses notable benefits in the removal of heavy metals. These advantages encompass its extensive adsorption capacity, broad adaptability, capacity for biotransformation, potential for genetic engineering transformation, cost-effectiveness, and environmentally sustainable nature. The process of bacterial adsorption is a complex phenomenon involving several physical and chemical processes, including adsorption, ion exchange, and surface and contact phenomena. A comprehensive investigation of parameters is necessary in order to develop a mathematical model that effectively measures metal ion recovery and process performance. The aim of this study was to explore the latest advancements in high-tolerance Pseudomonas isolated from natural environments and evaluate its potential as a biological adsorbent. The study investigated the adsorption process of this bacterium, examining key factors such as strain type, contact time, initial metal concentration, and pH that influenced its effectiveness. By utilizing dynamic mathematical models, the research summarized the biosorption process, including adsorption kinetics, equilibrium, and thermodynamics. The findings indicated that Pseudomonas can effectively purify water contaminated with heavy metals and future research will aim to enhance its adsorption performance and expand its application scope for broader environmental purification purposes.
    Matched MeSH terms: Waste Water/microbiology; Waste Water/chemistry
  10. Lam SM, Wong SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Res, 2024 Nov 15;261:119718.
    PMID: 39096993 DOI: 10.1016/j.envres.2024.119718
    Devising of materials that afforded dual applicability in decontamination and pollutant detection were still a towering challenge owing to the increasing flux of discharge toxic contaminants over the years. Herein, the NiFe2O4 nanoparticles-loaded on cube-like SrTiO3 (NiFe2O4/SrTiO3) composite was fabricated by a two-step hydrothermal approach providing remarkable photocatalytic treatment and electrochemical sensing of noxious pollutants in wastewater. The material traits of the fabricated composite were scrutinized by myriad characterization approaches. The NiFe2O4/SrTiO3 hybrid material demonstrated high surface area of 19.81 m2/g, adequate band gap energy of 2.75 eV, and prominent photoluminescence characteristics. In the presence of visible light, the NiFe2O4/SrTiO3 exhibited profound photocatalysis capability to eliminate sewage effluent-bearing chlortetracycline hydrochloride (CTCH) with 88.6% COD removal in 120 min, outperforming other pure materials. Meanwhile, the toxicity examination of effluent, the possible degradation pathway of CTCH and the proposed photocatalysis mechanism were also divulged. More importantly, the glassy carbon electrode was modified with synergized NiFe2O4/SrTiO3 (NiFe2O4/SrTiO3-GCE) was adopted for the precise quantification of Hydrazine (Hz). The NiFe2O4/SrTiO3-GCE obeyed first-order response for the Hz detection within the range of 1-10 mM: cyclic voltametric: limit of detection (LOD) of 0.119 μM with sensitivity of 18.9 μA μM-1 cm-2, and linear sweep voltametric: LOD of 0.222 μM with a sensitivity of 12.05 μA μM-1 cm-2. The stability and interference of modified electrode were also inspected. This work furnished valuable insights to yield a composite with the prominent S-scheme heterojunction system for quenching of charge carrier recombination and consequently contributing to the future realization into the domains of environmental clean-up and toxic chemical detection.
    Matched MeSH terms: Waste Water/analysis; Waste Water/chemistry
  11. Singhal A, Gomes J, Praveen VV, Ramachandran KB
    Biotechnol Prog, 1998 Jul;14(4):645-8.
    PMID: 9694688
    Fluid flow in UASB reactors is usually described by multicompartment models consisting of separate ideally mixed zones, plug flow zones, and stagnant zones linked with bypassing flows and back-mixing flows. A closer look at UASB reactor behavior indicates that this complexity is unnecessary. Our study on the startup and steady-state operation of a UASB reactor shows that its fluid flow can be explained just as well with a simple axial dispersion model. The physical transitions, which occur in different zones of the UASB reactor as the microorganisms acclimate to the wastewater, are adequately described by the model. Further, the number of parameters, which is six in standard UASB reactor models, is reduced to four in the case of the axial dispersion model.
    Matched MeSH terms: Waste Water
  12. Nhi-Cong LT, Lien DT, Mai CTN, Linh NV, Lich NQ, Ha HP, et al.
    Chemosphere, 2021 Sep;278:130464.
    PMID: 33845437 DOI: 10.1016/j.chemosphere.2021.130464
    Oil pollution which results from industrial activities, especially oil and gas industry, has become a serious issue. Cinder beats (CB), coconut fiber (CF) and polyurethane foam (PUF) are promising immobilization carriers for crude oil biodegradation because they are inexpensive, nontoxic, and non-polluting. The present investigation was aimed to evaluate this advanced technology and compare the efficiency of these immobilization carriers on supporting purple phototrophic bacterial (PPB) strains in hydrocarbon biodegradation of crude oil contaminated seawater. The surface of these biocarriers was supplemented with crude oil polluted seawater and immobilized by PPB strains, Rhodopseudomonas sp. DD4, DQ41 and FO2. Through scanning electron microscopy (SEM), the bacterial cells were shown to colonize and attach strongly to these biocarriers. The bacteria-driven carrier systems degraded over 84.2% supplemented single polycyclic aromatic hydrocarbons (PAHs). The aliphatic and aromatic components in crude oil that treated with carrier-immobilized consortia were degraded remarkably after 14 day-incubation. Among the three biocarriers, removal of the crude oil by CF-bacteria system was the highest (nearly 100%), followed by PUF-bacteria (89.5%) and CB-bacteria (86.3%) with the initial crude oil concentration was 20 g/L. Efficiency of crude oil removal by CB-bacteria and PUF-bacteria were 86.3 and 89.5%, respectively. Till now, the studies on crude oil degradation by mixture species biofilms formed by PPB on different carriers are limited. The present study showed that the biocarriers of an oil-degrading consortium could be made up of waste materials that are cheap and eco-friendly as well as augment the biodegradation of oil-contaminated seawater.
    Matched MeSH terms: Waste Water
  13. Pramanik BK, Pramanik SK, Monira S
    Chemosphere, 2021 Nov;282:131053.
    PMID: 34098311 DOI: 10.1016/j.chemosphere.2021.131053
    Nano/microplastics (NPs/MPs), a tiny particle of plastic pollution, are known as one of the most important environmental threats to marine ecosystems. Wastewater treatment plants can act as entrance routes for NPs/MPs to the aquatic environment as they breakdown of larger fragments of the plastic component during the treatment process; therefore, it is necessary to remove NPs/MPs during the wastewater treatment process. In this study, understanding the effect of water shear force on the fragmentation of larger size MPs into smaller MPs and NPs and their removal by air flotation and nano-ferrofluid (i.e., magnetite and cobalt ferrite particle as a coagulant) and membrane processes were investigated as a proof-of-concept study. It is found that a two-blade mechanical impeller could fragment MPs from 75, 150 and 300 μm into mean size NPs/MPs of 0.74, 1.14 and 1.88 μm, respectively. Results showed that the maximum removal efficiency of polyethylene, polyvinyl chloride and polyester was 85, 82 and 69%, respectively, in the air flotation process. Increasing the dose of behentrimonium chloride surfactant from 2 to 10 mg/L improved the efficiency of the air flotation process for NPs/MPs removal. It is also found that the removal efficiency of NPs/MPs by the air flotation system depends on solution pH, size, and types of NPs/MPs. This study also found a less significant removal efficiency of NPs/MPs by both types of ferrofluid used in this study with an average removal of 43% for magnetite and 55% for cobalt ferrite. All three plastics tested had similar removal efficiency by the nano-ferrofluid particles, meaning that this removal technique does not rely on the plastic component type. Among all the process tested, both ultrafiltration and microfiltration membrane processes were highly effective, removing more than 90% of NPs/MPs fragment particles. Overall, this study has confirmed the effectiveness of using air flotation and the membrane process to remove NPs/MPs from wastewater.
    Matched MeSH terms: Waste Water
  14. Wong LY, Lau SY, Pan S, Lam MK
    Chemosphere, 2022 Jan;287(Pt 2):132129.
    PMID: 34509009 DOI: 10.1016/j.chemosphere.2021.132129
    The suitability and efficacy of three-dimensional (3D) graphene, including its derivatives, have garnered widespread attention towards the development of novel, sustainable materials with ecological amenability. This is especially relevant towards its utilization as adsorbents of wastewater contaminants, such as heavy metals, dyes, and oil, which could be majorly attributed to its noteworthy physicochemical features, particularly elevated chemical and mechanical robustness, advanced permeability, as well as large specific surface area. In this review, we emphasize on the adsorptive elimination of oil particles from contaminated water. Specifically, we assess and collate recent literature on the conceptualization and designing stages of 3D graphene-based adsorbents (3DGBAs) towards oil adsorption, including their applications in either batch or continuous modes. In addition, we analytically evaluate the adsorption mechanism, including sorption sites, physical properties, surface chemistry of 3DGBA and interactions between the adsorbent and adsorbate involving the adsorptive removal of oil, as well as numerous effects of adsorption conditions on the adsorption performance, i.e. pH, temperature, initial concentration of oil contaminants and adsorbent dosage. Furthermore, we focus on the equilibrium isotherms and kinetic studies, in order to comprehend the oil elimination procedures. Lastly, we designate encouraging avenues and recommendations for a perpetual research thrust, and outline the associated future prospects and perspectives.
    Matched MeSH terms: Waste Water
  15. Hanif MA, Ibrahim N, Dahalan FA, Md Ali UF, Hasan M, Jalil AA
    Sci Total Environ, 2022 Mar 01;810:152115.
    PMID: 34896138 DOI: 10.1016/j.scitotenv.2021.152115
    The presence of microplastics (MP) and nanoplastics (NP) in the environment poses significant hazards towards microorganisms, humans, animals and plants. This paper is focused on recent literature studies and patents discussing the removal process of these plastic pollutants. Microplastics and nanoplastics can be quantified by counting, weighing, absorbance and turbidity and can be further analyzed using scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy and Raman tweezers. Mitigation methods reported are categorized depending on the removal characteristics: (i) Filtration and separation method: Filtration and separation, electrospun nanofiber membrane, constructed wetlands; (ii) Capture and surface attachment method: coagulation, flocculation and sedimentation (CFS), electrocoagulation, adsorption, magnetization, micromachines, superhydrophobic materials and microorganism aggregation; and (iii) Degradation method: photocatalytic degradation, microorganism degradation and thermal degradation; where removal efficiency between 58 and 100% were reported. As these methods are significantly distinctive, the parameters which affect the MP/NP removal performance e.g., pH, type of plastics, presence of interfering chemicals or ions, surface charges etc. are also discussed. 42 granted international patents related to microplastics and nanoplastics removal are also reviewed where the majority of these patents are focused on separation or filtration devices. These devices are efficient for microplastics up to 20 μm but may be ineffective for nanoplastics or fibrous plastics. Several patents were found to focus on methods similar to literature studies e.g., magnetization, CFS, biofilm and microorganism aggregation; with the addition of another method: thermal degradation.
    Matched MeSH terms: Waste Water
  16. Lam SM, Sin JC, Warren Tong MW, Zeng H, Li H, Huang L, et al.
    Chemosphere, 2023 Dec;344:140402.
    PMID: 37838031 DOI: 10.1016/j.chemosphere.2023.140402
    Environmental conservation and energy scarcity have become two core challenges with the ever-increasing advancement of industry, particularly chemical energy rich wastewater comprising refractory organics and pathogenic microbes. Here, a multifunctional photocatalytic fuel cell (PFC) was devised using NiFe2O4 nanoparticle-loaded on pine tree-like ZnO/Zn (NiFe2O4/ZnO/Zn) photoanode and CuO/Cu2O nanorods-loaded on Cu (CuO/Cu2O/Cu) cathode for extracting electricity upon wastewater treatment. When fed with Rhodamine B (RhB) dyestuff, the NiFe2O4/ZnO/Zn-PFC provided the maximum power density (Pmax) of 0.539 mW cm-2 upon visible light irradiation with an average RhB degradation of 85.2%, which were 2.8 and 2.7 times higher than ZnO/Zn, respectively. The remarkable enhanced NiFe2O4/ZnO/Zn-PFC performance was owing to the synergistic effect of pine tree-like structure and Z-scheme heterostructure. The pine tree-like with high surface area was not only for effective harnessing photon energies but also provided more directional routes for rapid segregation and transport of carriers and higher interface contacting areas with electrolyte. Through a series of systematic characterizations, the Z-scheme heterostructure mechanism of the system and organics degradation pathway were also speculated. Additionally, the performance of the NiFe2O4/ZnO/Zn-PFC in industry printing wastewater showed Pmax of 0.600 mW cm-2, which was considerably impressive as real wastewater was challenging to accomplish. The phytotoxicity outcome also manifested that the comprehensive toxicity of RhB was eradicated after PFC treatment. Lastly, the excellent recyclability and the pronounced bactericidal effect towards Escherichia coli and Staphylococcus aureus were other attributions which enabled the NiFe2O4/ZnO/Zn-PFC for possible practical application.
    Matched MeSH terms: Waste Water
  17. Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, et al.
    J Environ Manage, 2024 Feb 27;353:120170.
    PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170
    The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
    Matched MeSH terms: Waste Water
  18. Rambabu K, Bharath G, Thanigaivelan A, Das DB, Show PL, Banat F
    Bioresour Technol, 2021 Jan;319:124243.
    PMID: 33254466 DOI: 10.1016/j.biortech.2020.124243
    This study highlights biohydrogen production enrichment through NiO and CoO nanoparticles (NPs) inclusion to dark fermentation of rice mill wastewater using Clostridium beijerinckii DSM 791. NiO (~26 nm) and CoO (~50 nm) NPs were intrinsically prepared via facile hydrothermal method with polyhedral morphology and high purity. Dosage dependency studies revealed the maximum biohydrogen production characteristics for 1.5 mg/L concentration of both NPs. Biohydrogen yield was improved by 2.09 and 1.9 folds higher for optimum dosage of NiO and CoO respectively, compared to control run without NPs. Co-metabolites analysis confirmed the biohydrogen production through acetate and butyrate pathways. Maximum COD reduction efficiencies of 77.6% and 69.5% were observed for NiO and CoO inclusions respectively, which were higher than control run (57.5%). Gompertz kinetic model fitted well with experimental data of NPs assisted fermentation. Thus, NiO and CoO inclusions to wastewater fermentation seems to be a promising technique for augmented biohydrogen production.
    Matched MeSH terms: Waste Water*
  19. Bilal M, Lam SS, Iqbal HMN
    Environ Pollut, 2022 Jan 15;293:118582.
    PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582
    The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
    Matched MeSH terms: Waste Water*
  20. Sanjaya EH, Chen Y, Guo Y, Wu J, Chen H, Din MFM, et al.
    Bioresour Technol, 2022 Feb;346:126622.
    PMID: 34958906 DOI: 10.1016/j.biortech.2021.126622
    The simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) method was successfully carried out in an air-lift moving bed biofilm reactor (AL-MBBR) with cylinders carriers for the treatment of digested fish processing wastewater (FPW). Synthetic wastewater was used as substrate at stage 1. It changed into the digested FPW with dilution variation in order to increase the nitrogen and COD loading rates. With influent concentration of NH4+-N of 909 ± 101 mg-N/L and COD of 731 ± 26 mg/L, the nitrogen removal efficiency was 86.8% (nitrogen loading rate of 1.21 g-TN/L/d) and the COD removal efficiency was 50.5% (COD loading rate at 0.98 g-COD/L/d). This study showed that the process has the advantages in treating the real high ammonia concentration of digested wastewater containing organic compounds. The nitritation and anammox route was predominant in nitrogen removal, while COD oxidation and microbe proliferation played the main role in COD removal.
    Matched MeSH terms: Waste Water*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links