MATERIALS AND METHODS: The OncoCarta(™) panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits.
RESULTS: Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits.
CONCLUSION: Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools.
AIMS: To determine the usefulness of immunohistochemical techniques and FISH of the tumour suppressor TP 53 gene to identify microinvasion in marginal tissue sections and to relate the possible correlation between protein expression and genetic aberrations in OSCC cases in Malaysia.
METHODS: Immunohistochemistry and FISH of TP 53 genes were applied on 26 OSCC formalin fixed paraffin embed (FFEP) blocks selected from two oral cancer referral centers in Malaysia.
RESULTS: For p53 protein immunohistochemistry, 96% of the 26 OSCC studied showed positive immunostaining at the excision margins. In FISH assay, 48.9±9.7% of the cancerous cells were monoploid for p53 probe signals, 41.0±9.5 % were diploid, and 10.2±7.8 % were polyploid. A correlation between p53 immunostaining and TP53 gene aberrations was noted (p< 0.05).
CONCLUSIONS: Immunohistochemical analysis of p53 protein expression and FISH of TP53 gene could be applied as screening tool for microinvasion of OSCC.
METHODS: A cross-sectional study was conducted among Malaysian Chinese. Clinical assessments were performed, and medical history was collected. Three regions of p53 and two of VEGFA were amplified by PCR followed by direct sequencing using saliva-extracted DNA.
RESULTS: Eighty-four participants were recruited (average age 22.2 years). In the majority (n = 62), both eyelids were affected. Facial pigmentary, demarcation lines, tear trough and eye bags were not observed. Mixed (pigmented-vascular) was the most common subtype. Thirteen SNPs were found, nine of which are new. Only three out of 13 SNPs showed significant association with periorbital hyperpigmentation presentation. TA genotype in rs1437756379 (p53) was significantly more prevalent among participants with mixed subtype (P = 0.011) while AC genotype in rs1377053612 (VEGFA) was significantly more prevalent among pigmented subtype (P = 0.028). AA genotype in rs1479430148 (VEGFA) was significantly associated with allergic rhinitis in mixed subtype (P = 0.012).
CONCLUSION: Mixed subtype was the most prevalent type of periorbital hyperpigmentation in the study population. Three polymorphisms in p53 and VEGFA genes were statistically linked with different clinical presentations of periorbital hyperpigmentation.
METHODS: From October 2008 to February 2015, we established a hospital-based cohort of ovarian cancer patients and the germline status of all 218 women with invasive epithelial ovarian cancer was tested using targeted amplification and sequencing of the intron-exon junctions and exonic sequences of BRCA1, BRCA2, PALB2 and TP53.
RESULTS: BRCA1 and BRCA2 mutations were found in 8% (17 cases) and 3% (7 cases) of the ovarian cancer patients, respectively. Mutation carriers were diagnosed at a similar age to non-carriers, but were more likely to be Indian, have serous ovarian cancer, and have more relatives with breast or ovarian cancer. Nonetheless, 42% (10/24) of mutation carriers did not have any family history of breast or ovarian cancer and offering genetic counselling and genetic testing only to women with family history would mean that 35% (6/17) of BRCA1 mutation carriers and 57% (4/7) of BRCA2 mutation carriers would not be offered genetic testing.
CONCLUSIONS: Our data suggest that, similar to Caucasians, a significant proportion of Asian ovarian cancer was attributed to germline mutations in BRCA1 and to a lesser extent in BRCA2.