Displaying publications 21 - 40 of 52 in total

Abstract:
Sort:
  1. Sakurama K, Nishi K, Chuang VTG, Hashimoto M, Yamasaki K, Otagiri M
    Biol Pharm Bull, 2020;43(6):1023-1026.
    PMID: 32475912 DOI: 10.1248/bpb.b20-00205
    Aripiprazole (ARP) is one of antipsychotics and binds to human serum albumin (HSA) with a high affinity. In this study, we investigated the binding characteristics of ARP to oxidized HSA as observed in chronic disease conditions. Oxidized HSAs were prepared using chloramine-T (CT-HSA) or metal-catalyzed oxidation system (MCO-HSA) in vitro, respectively. An increase in the carbonyl content was confirmed in oxidized HSAs. From the results of circular dichroism (CD) and tryptophan fluorescence spectra, no significant structural change of oxidized HSAs was observed. These results indicate that prepared HSAs are mildly oxidized and well reflects the status of HSA during chronic diseases. However, oxidized HSAs were observed to have a significant decrease in binding to ARP. The results of the induced CD spectrum suggested that ARP bound to oxidized HSAs with a similar orientation. These results suggest that oxidation of HSA during chronic disease state significantly affected the microenvironment of the binding site for ARP and binding capacity of HSA to ARP.
    Matched MeSH terms: Tryptophan
  2. Faridah HS, Goh YM, Noordin MM, Liang JB
    Asian-Australas J Anim Sci, 2020 Dec;33(12):1965-1974.
    PMID: 32164059 DOI: 10.5713/ajas.19.0964
    OBJECTIVE: This study consisted of two stages; the first was to determine the effect of extrusion and sieving treatments on the chemical properties of palm kernel cake (PKC), and accordingly, a follow-up experiment (second stage) was conducted to determine and compare the apparent metabolizable energy (AME), and protein and amino acid digestibility of extruded and sieved PKC.

    METHODS: Two physical treatments, namely extrusion (using temperature profiles of 90°C/100°C/100°C, 90°C/100°C/110°C, and 90°C/100°C/120°C) and sieving (to 8 particles sizes ranging from >8.00 to 0.15 mm) were carried out to determine their effects on chemical properties, primarily crude protein (CP) and fiber contents of PKC. Based on the results from the above study, PKC that extruded with temperature profile 90/100/110°C and of sieved size between 1.5 to 0.15 mm (which made up of near 60% of total samples) were used to determine treatments effect on AME and CP and amino acid digestibility. The second stage experiment was conducted using 64 male Cobb 500 chickens randomly assigned to 16 cages (4 cages [or replicates] per treatment) to the following four dietary groups: i) basal (control) diet, ii) basal diet containing 20% untreated PKC, iii) basal diet containing 20% extruded PKC (EPKC), and iv) basal diet containing 20% sieved PKC (SPKC).

    RESULTS: Extrusion and sieving had no effect on CP and ash contents of PKC, however, both treatments reduced (p<0.05) crude fiber by 21% and 19%, respectively. Overall, extrusion and sieving reduced content of most of the amino acids except for aspartate, glutamate, alanine and lysine which increased, while serine, cysteine and tryptophan remained unchanged. Extrusion resulted in 6% increase (p<0.05) in AME and enhanced CP digestibility (p<0.05) by 32%, as compared to the untreated PKC while sieving had no effect on AME but improved CP digestibility by 39% which was not significantly different from that by extrusion.

    CONCLUSION: Extrusion is more effective than sieving and serves as a practical method to enhance AME and digestibility of CP and several amino acids in broiler chickens.

    Matched MeSH terms: Tryptophan
  3. Bello AU, Idrus Z, Meng GY, Narayan EJ, Farjam AS
    Gen Comp Endocrinol, 2018 05 01;260:146-150.
    PMID: 29339185 DOI: 10.1016/j.ygcen.2018.01.012
    Tryptophan (Trp) has been associated with the regulation of several behavioral and physiological processes, through stimulation of serotonergic activity. Tryptophan utilization at the metabolic level is influenced by the competitive carrier system it shares with large neutral amino acids (LNAA). This study was carried out using meat-type chicken as a model, to investigate the dose response effects of Trp/LNAA on fear response (tonic immobility; TI) and hormonal responses, including corticosterone (CORT), serotonin (5-HT), triiodothyronine (T3) and thyroxine (T4). A total of 12 cages (48 birds) were assigned to each of the six experimental groups at 29-42 days of age. Experimental diets were formulated to have incremental levels of Trp/LNAA (0.025, 0.030, 0.035, 0.040, 0.045, and 0.050). The results revealed that, Trp/NAA had no significant effect on growth performance and TI of the birds. However, elevation of Trp/LNAA was concurred with a linear reduction in CORT (P 
    Matched MeSH terms: Tryptophan
  4. Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, et al.
    Adv Mater, 2018 Jun;30(23):e1800917.
    PMID: 29633379 DOI: 10.1002/adma.201800917
    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10-6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.
    Matched MeSH terms: Tryptophan
  5. Pan Q, Saiman MZ, Mustafa NR, Verpoorte R, Tang K
    PMID: 26854826 DOI: 10.1016/j.jchromb.2016.01.034
    A rapid and simple reversed phase liquid chromatographic system has been developed for simultaneous analysis of terpenoid indole alkaloids (TIAs) and their precursors. This method allowed separation of 11 compounds consisting of eight TIAs (ajmalicine, serpentine, catharanthine, vindoline, vindolinine, vincristine, vinblastine, and anhydrovinblastine) and three related precursors i.e., tryptophan, tryptamine and loganin. The system has been applied for screening the TIAs and precursors in Catharanthus roseus plant extracts. In this study, different organs i.e., flowers, leaves, stems, and roots of C. roseus were investigated. The results indicate that TIAs and precursor accumulation varies qualitatively and quantitatively in different organs of C. roseus. The precursors showed much lower levels than TIAs in all organs. Leaves and flowers accumulate higher level of vindoline, catharanthine and anhydrovinblastine while roots have higher level of ajmalicine, vindolinine and serpentine. Moreover, the alkaloid profiles of leaves harvested at different ages and different growth stages were studied. The results show that the levels of monoindole alkaloids decreased while bisindole alkaloids increased with leaf aging and upon plant growth. The HPLC method has been successfully applied to detect TIAs and precursors in different types of C. roseus samples to facilitate further study of the TIA pathway and its regulation in C. roseus plants.
    Matched MeSH terms: Tryptophan
  6. Tochilina AG, Belova IV, Ilyicheva TN, Marchenko VY, Zhirnov VA, Molodtsova SB, et al.
    Sovrem Tekhnologii Med, 2022;14(5):36-43.
    PMID: 37181836 DOI: 10.17691/stm2022.14.5.04
    The aim of the study was to analyze the genome features of the probiotic strains Bifidobacterium longum 379, Bifidobacterium bifidum 1, and Bifidobacterium bifidum 791 and study their antiviral activity.

    MATERIALS AND METHODS: Whole genome sequencing of three strains of bifidobacteria was performed on the MiSeq platform (Illumina Inc., USA). The genomes were annotated using the Prokka v. 1.11 utility and RAST genomic server. The individual genetic determinants were searched using the ResFinder 3.2, PathogenFinder, PlasmidFinder, RAST, and Bagel 4 software. The antiviral activity of the strains against influenza A viruses was studied using MDCK cells (Madin-Darby canine kidney cells), the epidemic strain of influenza A/Lipetsk/1V/2018 (H1N1 pdm09) (EPI_ISL_332798), the highly pathogenic avian influenza virus A/common gull/Saratov/1676/2018 (H5N6) strain (EPI_ISL_336925), and neutral red vital dye.

    RESULTS: The genomes of all studied strains contained determinants responsible for utilization of carbohydrates of plant origin; the genes of key enzymes for the synthesis of tryptophan and folic acid are present in the genomes of B. longum 379 and B. bifidum 791. A feature of the B. bifidum 791 genome is the presence of determinants responsible for the synthesis of thermostable type I bacteriocins - flavucin and lasso peptide. The B. bifidum 791 strain was found to show pronounced antiviral activity against both the strains of influenza A, the supernatant of which suppressed viral replication in vitro up to a dilution of 1:8, and the cells inhibited viral reproduction up to a concentration of 6·106 CFU/ml.

    CONCLUSION: The analysis of complete genomes of B. longum 379, B. bifidum 1, and B. bifidum 791 showed features that determine their strain-specific properties, the findings on which were previously made empirically based on indirect signs. In the genomes of B. longum 379 and B. bifidum 791 strains, in contrast to B. bifidum 1 strain, key enzymes for the synthesis of tryptophan and folic acid were found. These substances have an impact on the human body in many ways, including having a thymoleptic effect (reducing emotional stress, irritability, anxiety, eliminating lethargy, apathy, melancholy, anxiety) and regulating cognitive activity. The presence of determinants responsible for the synthesis of thermostable type I bacteriocins in the genome of B. bifidum 791 strain determines its pronounced antiviral activity.

    Matched MeSH terms: Tryptophan
  7. Choong MY, Tee SF, Tang PY
    Psychiatry Res, 2014 Dec 30;220(3):1163-6.
    PMID: 25219619 DOI: 10.1016/j.psychres.2014.07.076
    Matched MeSH terms: Tryptophan Hydroxylase/genetics*
  8. Nazree NE, Loke AC, Zainal NZ, Mohamed Z
    Asia Pac Psychiatry, 2015 Mar;7(1):72-7.
    PMID: 24376086 DOI: 10.1111/appy.12118
    Numerous association studies of candidate genes studies with major depressive disorder (MDD) have been conducted for many years; however, the evidence of association between genes and the risk of developing MDD still remains inconclusive. In this study, we aimed to investigate the association between the tryptophan hydroxylase 2 (TPH2) gene and MDD in three ethnic groups (Malay, Chinese and Indian) within the Malaysian population.
    Matched MeSH terms: Tryptophan Hydroxylase/genetics*
  9. Tee SF, Chow TJ, Tang PY, Loh HC
    Genet. Mol. Res., 2010;9(3):1274-8.
    PMID: 20623453 DOI: 10.4238/vol9-3gmr789
    The serotoninergic system has been implicated in the etiology of schizophrenia and other behavioral disorders. Association studies have focused on the tryptophan hydroxylase 2 gene (TPH2) and the 5-hydroxytryptamine receptor 2A gene (5-HTR2A). We genotyped two single-nucleotide polymorphisms, A1438G of 5-HTR2A and intronic rs1386494 of TPH2 in the Malay population, using a sample size of 289 schizophrenic patients and 130 healthy controls. We found a significant association of A1438G of 5-HTR2A with schizophrenia in Malays. On the other hand, TPH2 polymorphism was not associated with schizophrenia. This is the first genetic association study concerning schizophrenia in the Malay population.
    Matched MeSH terms: Tryptophan Hydroxylase/genetics*
  10. Karami A, Romano N, Hamzah H, Simpson SL, Yap CK
    Environ Pollut, 2016 May;212:155-165.
    PMID: 26845363 DOI: 10.1016/j.envpol.2016.01.055
    Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
    Matched MeSH terms: Tryptophan Hydroxylase/metabolism
  11. Venil CK, Zakaria ZA, Ahmad WA
    Acta Biochim. Pol., 2015;62(2):185-90.
    PMID: 25979288 DOI: 10.18388/abp.2014_870
    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.
    Matched MeSH terms: Tryptophan/metabolism
  12. Moriya S, Khel NB, Parhar IS
    Neuroscience, 2015 May 21;294:109-15.
    PMID: 25772790 DOI: 10.1016/j.neuroscience.2015.03.012
    Serotonin (5-HT) is a key regulator of mood and sexual behaviors. 5-HT reuptake inhibitors have been used as antidepressants. Really interesting new gene (RING) finger proteins have been associated with 5-HT regulation but their role remains largely unknown. Some RING finger proteins are involved in the serotonergic system, therefore, we speculate that the gene expression of RING finger protein38 (rnf38) is regulated by the serotonergic system. In the present study, we aimed to identify the full length sequence of medaka (Oryzias latipes) rnf38 mRNA and investigate its association with the serotonergic system using an antidepressant, citalopram (CIT). We identified the full length rnf38 cDNA, which consisted of 2726 nucleotides spanning 12 exons and the deduced protein sequence consisting of 518 amino acid residues including a RING finger domain, a KIT motif and a coiled-coil domain. Medaka exposed to 10(-7)M of CIT showed anxiety-like behavior. The expressions of 5-HT-related genes, pet1, solute carrier family 6, member 4A (slc6a4) and tryptophan hydroxylase (tph2) were significantly low (P<0.05) in the hindbrain. On the other hand, rnf38 gene was significantly high (P<0.05) in the telencephalon and the hypothalamus. This shows that 5-HT synthesis and transport in the hindbrain is suppressed by CIT, which induces rnf38 gene expression in the forebrain where 5-HT neurons project. Thus, the expression of rnf38 is negatively regulated by the serotonergic system.
    Matched MeSH terms: Tryptophan Hydroxylase/metabolism
  13. Emadi M, Jahanshiri F, Kaveh K, Hair-Bejo M, Ideris A, Alimon AR
    Avian Pathol, 2011 Feb;40(1):63-72.
    PMID: 21331949 DOI: 10.1080/03079457.2010.539590
    To explore the effects of the combination of tryptophan (Trp) and arginine (Arg) on growth performance, serum parameters and immune response of broiler chickens challenged with intermediate plus strain of infectious bursal disease virus vaccine, an in vivo experiment was conducted. A corn-soybean meal-based diet containing different levels of Arg and Trp was used. Cobb500 male broiler chickens from 0 to 49 days of age were subjected to a diet supplemented with the combination of Trp and Arg. Growth performance parameters and serum parameters were measured at 27 and 49 days of age. To evaluate the immunomodulatory effects of the combination of Trp and Arg on the challenged chickens, we measured the serum levels of interferon-α, interferon-γ and immunoglobulin G at 27, 35, 42, and 49 days of age. The results showed that the three evaluated immune system parameters including interferon-α, interferon-γ and immunoglobulin G were significantly enhanced after treatment. This enhancement resulted in the recovery of infectious bursal disease virus-infected chickens compared with controls as confirmed by histopathological examinations. Moreover, serum parameters such as albumin and total protein increased, whereas the treatment decreased (P<0.05) the feed:gain ratio, aspartate amino-transferase, alkaline phosphatase, lactic dehydrogenase, triglyceride and cholesterol. These findings suggest that the combination of Arg and Trp has a regulatory effect on growth performance. Moreover, it modulates the systemic immune response against infectious bursal disease.
    Matched MeSH terms: Tryptophan/administration & dosage*
  14. Baharuddin A, Amir Hassan A, Othman R, Xu Y, Huang M, Ario Tejo B, et al.
    Chem Pharm Bull (Tokyo), 2014;62(10):947-55.
    PMID: 25273053
    In the efforts to find an anti-viral treatment for dengue, a simple tryptophan fluorescence-screening assay aimed at identifying dengue domain III envelope (EIII) protein inhibitors was developed. Residue Trp391 of EIII was used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residue upon binding to a peptide. The analysis was based on the electron excitation at 280 nm and fluorescence emission at 300-400 nm of EIII, followed by quenching of fluorescence in the presence of potential peptidic inhibitors coded DS36wt, DS36opt, DN58wt and DN58opt. The present study found that the fluorescence of the recombinant EIII was quenched following the binding of DS36opt, DN58wt and DN58opt in a concentration-dependent manner. Since the λmax for emission remained unchanged, the effect was not due to a change in the environment of the tryptophan side chain. In contrast, a minimal fluorescence-quenching effect of DS36wt at 20 and 40 µM suggested that the DS36wt does not have any binding ability to EIII. This was supported by a simple native-page gel retardation assay that showed a band shift of EIII domain when incubated with DS36opt, DN58wt and DN58opt but not with DS36wt. We thus developed a low-cost and convenient spectrophotometric binding assay for the analysis of EIII-peptide interactions in a drug screening application.
    Matched MeSH terms: Tryptophan/chemistry*
  15. Kato TA, Katsuki R, Kubo H, Shimokawa N, Sato-Kasai M, Hayakawa K, et al.
    Psychiatry Clin Neurosci, 2019 Aug;73(8):448-457.
    PMID: 30900331 DOI: 10.1111/pcn.12842
    AIM: Understanding premorbid personality is important, especially when considering treatment selection. Historically, the premorbid personality of patients with major depression in Japan was described as Shuchaku-kishitsu [similar to Typus melancholicus], as proposed by Shimoda in the 1930s. Since around 2000, there have been increased reports in Japan of young adults with depression who have had premorbid personality differing from the traditional type. In 2005, Tarumi termed this novel condition 'dysthymic-type depression,' and more recently the condition has been called Shin-gata/Gendai-gata Utsu-byo [modern-type depression (MTD)]. We recently developed a semi-structured diagnostic interview to evaluate MTD. Development of a tool that enables understanding of premorbid personality in a short time, especially at the early stage of treatment, is desirable. The object of this study was to develop a self-report scale to evaluate the traits of MTD, and to assess the scale's psychometric properties, diagnostic accuracy, and biological validity.

    METHODS: A sample of 340 participants from clinical and community settings completed measures. Psychometric properties were assessed with factor analysis. Diagnostic accuracy of the MTD traits was compared against a semi-structured interview.

    RESULTS: The questionnaire contained 22 items across three subscales, thus we termed it the 22-item Tarumi's Modern-Type Depression Trait Scale: Avoidance of Social Roles, Complaint, and Low Self-Esteem (TACS-22). Internal consistency, test-retest reliability, and convergent validity were all satisfactory. Among patients with major depression, the area under the curve was 0.757 (sensitivity of 63.1% and specificity of 82.9%) and the score was positively correlated with plasma tryptophan.

    CONCLUSION: The TACS-22 possessed adequate psychometric properties and diagnostic accuracy in an initial sample of Japanese adults. Additional research on its ability to support clinical assessment of MTD is warranted.

    Matched MeSH terms: Tryptophan/blood
  16. Khong TK, Selvanayagam VS, Hamzah SH, Yusof A
    J Appl Physiol (1985), 2018 10 01;125(4):1021-1029.
    PMID: 29975601 DOI: 10.1152/japplphysiol.00221.2018
    Both the quantity and quality of pre-exercise carbohydrate (CHO) meals have been shown to improve endurance performance. However, their role in attenuating central fatigue (CF) is inconclusive. The use of neurophysiological techniques, such as voluntary activation (VA) and the central activation ratio (CAR), alongside maximum voluntary contraction (MVC) and sustained MVC (sMVC) can provide information on CF. Hence, the objective of this study was to investigate the effects of isocaloric pre-exercise meals: 1) a high versus low quantity of CHO and 2) a high quantity of CHO with a high versus low glycemic index (GI) on MVC, VA, and CAR following a 90-min run. The high and low quantity of CHO was 1.5 and 0.8 g/kg body wt, respectively, and high and low GI was ~75 and ~40, respectively. Blood insulin, serotonin, tryptophan, and gaseous exchange were also measured. High CHO preserved sMVC, VA, CAR, and serotonin postrunning with greater CHO oxidation and insulin response, whereas in low CHO, greater reductions in sMVC, VA, and CAR were accompanied by higher serotonin and fat oxidation with lower insulin response. These observations indicate central involvements. Meanwhile, high GI CHO better preserved force (sMVC), CAR, and tryptophan with greater CHO oxidation and insulin response compared with low GI. The findings of this study suggest that pre-exercise meals with varying quantity and quality of CHO can have an effect on CF, where greater CHO oxidation and insulin response found in both high CHO and high GI lead to attenuation of CF. NEW & NOTEWORTHY This paper examined the effects of carbohydrate interventions (high and low: quantity and quality wise) on central activity during prolonged exercise using mainly neurophysiological techniques along with gaseous exchange and blood insulin, serotonin, and tryptophan data.
    Matched MeSH terms: Tryptophan/blood
  17. Mohamad Zuldin NN, Said IM, Mohd Noor N, Zainal Z, Jin Kiat C, Ismail I
    ScientificWorldJournal, 2013;2013:209434.
    PMID: 24065873 DOI: 10.1155/2013/209434
    This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin, 6-benzylaminopurine (BAP), and 1-naphthaleneacetic acid (NAA) on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L⁻¹ 2,4-D (70.83%). Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L⁻¹ 2,4-D and 3% sucrose (9.47 ± 0.4667 mL). The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L⁻¹ yeast extract (9.275 ± 0.082 mg L⁻¹) that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3  μM tryptophan and harvested at 6 days (13.226 ± 1.98 mg L⁻¹).
    Matched MeSH terms: Tryptophan/pharmacology
  18. Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, et al.
    J Neuroinflammation, 2015 May 30;12:110.
    PMID: 26025142 DOI: 10.1186/s12974-015-0328-2
    During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery.

    METHODS: Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9-10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry.

    RESULTS: In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores.

    CONCLUSION: TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN's detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.

    Matched MeSH terms: Tryptophan/blood
  19. Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ
    PLoS One, 2021;16(12):e0262029.
    PMID: 34972183 DOI: 10.1371/journal.pone.0262029
    Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
    Matched MeSH terms: Tryptophan/chemistry
  20. Lim WF, Nasir SM, Teh LK, James RJ, Izhar MHM, Salleh MZ
    Turk J Biol, 2020;44(6):437-448.
    PMID: 33402870 DOI: 10.3906/biy-2005-2
    Garcinia species are widely used for their slimming effects via increased fat burning and suppression of satiety. However, scientific evidence for the biological effects of Garcinia atroviridis (GA) is lacking. We investigated the phytochemical composition, safety profiles, and antioxidant and antiobesity effects of methanolic extracts of Garcinia atroviridis (MeGa) in obese female rats. Repeated dose toxicity studies were conducted according to the OECD guidelines. Upon sacrifice, haematological, biochemical, lipid profile, and serum-based metabolomics analyses were performed to evaluate metabolic expression changes and their related pathways. MeGa contains several phytochemical groups and GA fruit acids. MeGa was found to be nontoxic in both male and female rats with an oral lethal dose (LD50) of 2000 mg/kg. After 9 weeks of treatment, MeGa-treated obese rats had lower weight gain and better lipid profiles (cholesterol and triglyceride), which correlated with the altered metabolic pathways involved in the metabolism of lipid (glycerophospholipid) and biosynthesis of unsaturated fatty acid. In addition, MeGa caused differential metabolism pathways of arachidonic acid and tryptophan that affect the inflammatory response and suppression of appetite. We concluded that MeGa is safe, and its slimming effects are due to the differential metabolism of lipids.
    Matched MeSH terms: Tryptophan
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links