Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Rajinder S, Nik Adilah NO
    Malays Fam Physician, 2017;12(3):25-27.
    PMID: 29527276 MyJurnal
    The presence of a tick in the ear is an uncommon problem encountered by the department of otorhinolaryngology. A tick infestation in the ear can be a traumatising experience for the patient. Here, we report a case of a woman who presented with left facial weakness due to the presence of a tick in the external auditory canal.
    Matched MeSH terms: Ticks
  2. Mariana A, Vellayan S, Halimaton I, Ho TM
    Asian Pac J Trop Med, 2011 Mar;4(3):227-8.
    PMID: 21771459 DOI: 10.1016/S1995-7645(11)60075-8
    OBJECTIVE: To identify the acari present on pet Burmese pythons in Malaysia and to determine whether there is any potential public health risk related to handling of the snakes.

    METHODS: Two sub-adult Burmese pythons kept as pets for a period of about 6 to 7 months by different owners, were brought to an exotic animal practice for treatment. On a complete medical examination, some ticks and mites (acari) were detected beneath the dorsal and ventral scales along body length of the snakes. Ticks were directly identified and mites were mounted prior to identification.

    RESULTS: A total of 12 ticks represented by 3 males, 2 females and 7 nymphal stages of Rhipicephalus sanguineus (R. sanguineus) were extracted from the first python while the other one was with 25 female Ophionyssus natricis (O. natricis) mesostigmatid mites. Only adult female mites were found. These mites are common ectoparasites of Burmese pythons.

    CONCLUSIONS: Both the acarine species found on the Burmese pythons are known vectors of pathogens. This is the first record that R. sanguineus has been reported from a pet Burmese python in Malaysia.

    Matched MeSH terms: Ticks/classification; Ticks/growth & development*
  3. Alajmi RA, Ayaad TH, Al-Harbi HT, Shaurub EH, Al-Musawi ZM
    Trop Biomed, 2019 Sep 01;36(3):758-765.
    PMID: 33597497
    The present work aimed to identify camel ticks Hyalomma dromedarii and Hyalomma marginatum using direct sequence of the mitochondrial 16S rRNA gene and the detection of their natural infection rate with Rickettsia and Borrelia using the PCR/ hybridization method for amplification of the citrate synthase (gltA) gene. The phylogenetic analysis showed 99% similarity between Hyalomma dromedarii and its reference with accession # L34306.1, as well as between Hyalomma marginatum and its reference with accession # KT391060.1 obtained from GenBank data base. The prevalence of H. dromedarii and H. marginatum was about 99% and 1%, respectively. The intraspecific variation among H. dromedarii ranged between 0.2-6.6%. The interspecific variation between H. dromedarii and H. marginatum was 18.3%. PCR/hybridization of the sampled H. dromedarii detected about 31%, 37% and 18% natural infection with Rickettsia, Borrelia and co-infection with both pathogens, respectively. In contrast, none of Rickettsia or Borrelia was detected in H. marginatum. The present study emphasizes the accuracy of the identification of camel ticks based on molecular techniques. The ability of H. dromedarii to spread more than one disease is an important issue from the epidemiological standpoint. Future epidemiological research should be carried out in Saudi Arabia to monitor the distribution of tick species and suggest effective control strategies.
    Matched MeSH terms: Ticks/classification; Ticks/microbiology*
  4. Zamzil Amin, A., Baharudin, A., Shahid, H., Din Suhaimi, S., Nor Affendie, M.J.
    MyJurnal
    A tick in the ear is a very painful condition and removal is difficult because it grips firmly to the external auditory canal or tympanic membrane. Facial paralysis is a rarely reported localised neurological complication of an intra-aural tick infestation. The pathophysiology of localised paralysis is discussed, together with the safe way of handling patients with an intra-aural tick infestation.
    Matched MeSH terms: Ticks
  5. Bell-Sakyi L, Darby A, Baylis M, Makepeace BL
    Ticks Tick Borne Dis, 2018 07;9(5):1364-1371.
    PMID: 29886187 DOI: 10.1016/j.ttbdis.2018.05.015
    Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
    Matched MeSH terms: Ticks/cytology*; Ticks/genetics; Ticks/pathogenicity
  6. Indudharan R, Dharap AS, Htun YN
    Trop Geogr Med, 1995;47(5):227-8.
    PMID: 8553451
    Matched MeSH terms: Ticks*
  7. Mariana A, Zuraidawati Z, Ho TM, Kulaimi BM, Saleh I, Shukor MN, et al.
    PMID: 18564690
    A survey of ticks and other ectoparasites was carried out during a national biodiversity scientific expedition at Ulu Muda Forest Reserve, Kedah, Malaysia from 23-29 March 2003. A total of 161 animals comprising 20 species of birds, 16 species of bats, six species of non-volant small mammals and 12 species of reptiles were examined for ticks and other ectoparasites. From these animals, nine species in five genera of ticks, 10 species in two families of Mesostigmatid mites and five species of chiggers were collected. Three of the ectoparasitic species found, Dermacentor auratus, Ixodes granulatus and Leptotrombidium deliense are of known public health importance. This survey produced the first list of ticks and other ectoparasites in the forest reserve and the third study of ectoparasites in Kedah. Fourteen species of these ectoparasites are new locality records.
    Matched MeSH terms: Ticks/growth & development*
  8. Mariana A, Zuraidawati Z, Ho TM, Mohd Kulaimi B, Saleh I, Shukor MN, et al.
    PMID: 16438136
    A survey of ticks and other ectoparasites was carried out during a national biodiversity scientific expedition at Gunung Stong Forest Reserve, Kelantan, Malaysia from 23-29 May 2003. A total of 272 animals comprised of 12 species of birds, 21 species of bats, 7 species of rodents and 2 species of insects were examined for ticks and other ectoparasites. From these animals, 5 species in 4 genera of ticks; 7 species in 2 families of Mesostigmatid mites and 5 species of chiggers were collected. Among the ectoparasites found were Ixodes granulatus and Leptotrombidium deliense, which are of known medical importance. A tick island consisting of 10 nymphal stages of Dermacentor spp was observed feeding on Rattus tiomanicus.
    Matched MeSH terms: Ticks*
  9. Trinachartvanit W, Maneewong S, Kaenkan W, Usananan P, Baimai V, Ahantarig A
    Parasit Vectors, 2018 Dec 27;11(1):670.
    PMID: 30587229 DOI: 10.1186/s13071-018-3259-9
    BACKGROUND: Coxiella bacteria were identified from various tick species across the world. Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii that most commonly infects a variety of mammals. Non-mammalian hosts, such as birds, have also been reported to be infected with the pathogenic form of "Candidatus Coxiella avium". This research increases the list of tick species that have been found with Coxiella-like bacteria in Thailand.

    METHODS: A total of 69 ticks were collected from 27 domestic fowl (Gallus gallus domesticus), 2 jungle fowl (Gallus gallus) and 3 Siamese firebacks (Lophura diardi) at 10 locations (provinces) in Thailand. Ticks were identified and PCR was used to amplify Coxiella bacteria 16S rRNA, groEL and rpoB genes from the extracted tick DNA. MEGA6 was used to construct phylogenetic trees via a Maximum Likelihood method.

    RESULTS: The phylogenetic analysis based on the 16S rRNA gene showed that the Coxiella sequences detected in this study grouped in the same clade with Coxiella sequences from the same tick genus (or species) reported previously. In contrast, rpoB gene of the Coxiella bacteria detected in this study did not cluster together with the same tick genus reported previously. Instead, they clustered by geographical distribution (Thai cluster and Malaysian cluster). In addition, phylogenetic analysis of the groEL gene (the chaperonin family) showed that all Coxiella bacteria found in this study were grouped in the same clade (three sister groups).

    CONCLUSIONS: To our knowledge, we found for the first time rpoB genes of Coxiella-like bacteria in Haemaphysalis wellingtoni ticks forming two distinct clades by phylogenetic analysis. This may be indicative of a horizontal gene transfer event.

    Matched MeSH terms: Ticks/classification; Ticks/microbiology*
  10. Che Lah EF, Yaakop S, Ahamad M, Md Nor S
    Zookeys, 2015.
    PMID: 25685009 DOI: 10.3897/zookeys.478.8037
    Blood meal analysis (BMA) from ticks allows for the identification of natural hosts of ticks (Acari: Ixodidae). The aim of this study is to identify the blood meal sources of field collected on-host ticks using PCR analysis. DNA of four genera of ticks was isolated and their cytochrome b (Cyt b) gene was amplified to identify host blood meals. A phylogenetic tree was constructed based on data of Cyt b sequences using Neighbor Joining (NJ) and Maximum Parsimony (MP) analysis using MEGA 5.05 for the clustering of hosts of tick species. Twenty out of 27 samples showed maximum similarity (99%) with GenBank sequences through a Basic Local Alignment Search Tool (BLAST) while 7 samples only showed a similarity range of between 91-98%. The phylogenetic trees showed that the blood meal samples were derived from small rodents (Leopoldamyssabanus, Rattustiomanicus and Sundamysmuelleri), shrews (Tupaiaglis) and mammals (Tapirusindicus and Prionailurusbengalensis), supported by 82-88% bootstrap values. In this study, Cyt b gene as a molecular target produced reliable results and was very significant for the effective identification of ticks' blood meal. The assay can be used as a tool for identifying unknown blood meals of field collected on-host ticks.
    Matched MeSH terms: Ticks
  11. Wells K, Beaucournu JC, Durden LA, Petney TN, Lakim MB, O'Hara RB
    Parasitol Res, 2012 Aug;111(2):909-19.
    PMID: 22526293 DOI: 10.1007/s00436-012-2917-7
    Domestic dogs, Canis lupus, have been one of the longest companions of humans and have introduced their own menagerie of parasites and pathogens into this relationship. Here, we investigate the parasitic load of 212 domestic dogs with fleas (Siphonaptera) chewing lice (Phthiraptera), and ticks (Acarina) along a gradient from rural areas with near-natural forest cover to suburban areas in Northern Borneo (Sabah, Malaysia). We used a spatially-explicit hierarchical Bayesian model that allowed us to impute missing data and to consider spatial structure in modelling dog infestation probability and parasite density. We collected a total of 1,968 fleas of two species, Ctenocephalides orientis and Ctenocephalides felis felis, from 195 dogs (prevalence, 92 %). Flea density was higher on dogs residing in houses made of bamboo or corrugated metal (increase of 40 % from the average) compared to timber or stone/compound houses. Host-dependent and landscape-level environmental variables and spatial structure only had a weak explanatory power. We found adults of the invasive chewing louse Heterodoxus spiniger on 42 dogs (20 %). The effect of housing conditions was opposite to those for fleas; lice were only found on dogs residing in stone or timber houses. We found ticks of the species Rhipicephalus sanguineus as well as Haemaphysalis bispinosa gp., Haemaphysalis cornigera, Haemaphysalis koenigsbergi, and Haemaphysalis semermis on 36 dogs (17 %). The most common tick species was R. sanguineus, recorded from 23 dogs. Tick infestations were highest on dogs using both plantation and forest areas (282 % increase in overall tick density of dogs using all habitat types). The infestation probability of dogs with lice and ticks decreased with elevation, most infestations occurred below 800 m above sea level. However, the density of lice and ticks revealed no spatial structure; infestation probability of dogs with these two groups revealed considerable autocorrelation. Our study shows that environmental conditions on the house level appeared to be more influential on flea and lice density whereas tick density was also influenced by habitat use. Infestation of dogs with Haemaphysalis ticks identified an important link between dogs and forest wildlife for potential pathogen transmission.
    Matched MeSH terms: Ticks
  12. Syamsul VS, Okene IA, Yahya SNC, Hamdan RH, Lee SH, Tan LP
    Trop Life Sci Res, 2020 Apr;31(1):45-56.
    PMID: 32963710 DOI: 10.21315/tlsr2020.31.1.3
    Kelantan is a chiefly agrarian state with abundant small-holder ruminant farms in the East Coast economic Region of Malaysia. Ectoparasitism affects small ruminant production in Malaysia. It often causes reduction in meat quality and milk production which affect the farmers' income. To date, no report for the prevalence of ectoparasitism on small ruminant in Kelantan compared to other state in Malaysia. This study aims to determine the prevalence and associated risk factor of ruminant ectoparasitism in Kelantan. Ectoparasites were collected by manual picking and skin scrapping from 462 sheep and goats in Kelantan between April and September 2017 (during dry season). 60% of the sampled animals were infested with at least one species of the ectoparasites. In this study, lice and ticks were the most prevalent ectoparasites on small ruminant, which were 43.64% and 22.98%, respectively. The high biotic potential of lice population on host might be one of the factors they become the most prevalent species found on the animals. There was no significant relationship between ectoparasitism prevalence and species of small ruminants (χ2 = 1.12, p = 0.293). However, there was significant variations in prevalence between the regions where the animals were sampled from (χ2 = 30.25, p = 0.002) and farm management system for both species. This present study provides baseline epidemiological data on the prevalence of ectoparasitism in small ruminant. This information is useful for the formulation of prevention and control measures in order to enhance ruminant productivity in Kelantan.
    Matched MeSH terms: Ticks
  13. Diyes GCP, Karunaratne WAIP, Tomberlin JK, Rajakaruna RS
    Trop Biomed, 2015 Dec 01;32(4):791-795.
    PMID: 33557472
    Megaselia scalaris (Loew) is a cosmopolitan polyphagous small fly with the ability of exploiting variety of ecological niches. Different life history stages act as detritivore, parasite, and parasitoid of wider spectrum of plant and animal matter under natural and laboratory conditions. Here, for the first time we present the opportunistic parasitism of M. scalaris on Otobius megnini, which act as a vector of Q fever and is capable of causing paralysis, toxic conditions, otoacariasis and otitis in humans and other animals. Tick samples from the ear canals of 14 thoroughbred horses were brought to the laboratory and several days later, larvae of M. scalaris were found feeding on immature stages of O. megnini. When the development was completed pupae were found attached to adult ticks and all nymphs were found dead. This context reveals the capability of M. scalaris surviving on O. megnini and the risk of their invading ear canals of horses.
    Matched MeSH terms: Ticks
  14. Mohammed, Konto, Tukur, Salamatu M., Watanabe, Mahira, Abd-rani, Puteri A.m., Lau, Seng F., Shettima, Yasheruram M., et al.
    MyJurnal
    Changes in tick-vector densities and a resultant incidence of tick-borne diseases are
    caused mainly by human activities affecting the environmental ecosystem, especially in tropical
    countries. As one of the most important invertebrate arthropod vectors of disease transmission, ticks
    are susceptible to changes in their environment due to their sole dependence of all their life stages on
    prevailing environment. Upon completion of their lifecycle, ticks depend on the availability of hosts
    and other several factors related to their surroundings to survive. This review discusses the major
    factors that influence the prevalence and distribution of tick-borne diseases among domestic animals
    in Malaysia. It is highly imperative to understand the factors that lead to increase in tick-vector
    populations, infection intensity and hence the spatial distribution of ticks and tick-borne diseases in
    order to prevent their emergence and resurgence as well as to serve as a basis for effectivecontrol.
    Matched MeSH terms: Ticks
  15. Abdulla MA, Khairul Anuar A, Khalifa S, Salmah I, Mohamad Nazmul HM, Suzainur KAR, et al.
    JUMMEC, 2002;7:135-141.
    Four calves from each group of purebred Kedah kelantan (KK), halfbred KK X Friesian, and quarterbred KK X Friesian were experimentally infested with Boophilus micropills larvae. Two calves from each genotype were injected, intramuscularly with antihistamine while the remaining two animals in each genotype received the same dose of antihistamine and dexamethasone. Dexamethasone combined anti-histamine treatment suppress tick resistance as manifested by the production of higher number of engorged female ticks, higher mean weight of replete ticks, mean weight of eggs and mean number of larvae hatched from 1 g of eggs. In anti-histamine treated animals there was no reduction of resistant in all animals as manifested by a few ticks were able to feed successfully. At 1, 2, and 3 hours post-larval attachment in anti-histamine and dexamethasone treated cattle there was complete ablation of the cellular infiltration in the dermis beneath the tick mouthparts, especially eosinophil and basophils. There was little destruction of tissue. However, in anti-histamine treated cattle there were more cellular infiltration and degranulation in the dermis. The cells infiltrating the dermis were mainly eosinophils followed by neutrophs, mast cells and basophils and some of these cells showed sign of degranulation. At 24 hours postlarval attachment, animals lTeated with anti-histamine and dexamethasone showed reduction of, cellular infiltration, degranulation, size of the epidermal lesion and tissue damage. The neutrophils were the predominant cells within the epidermal lesions. However, animals in anti-histamine treatment showed edema, more cellular infiltration and degranulation, and destruction of tissues as compared to antihistamine and dexamethasone treated animals. In anti-histamine treated cattle the epidermal lesions were obviously larger and the percentage of eosinophils and basophils were higher than those of antihistamine and dexamethasone treated animals. KEYWORDS: Kedah-Kelantan cattle, KK X Friesian callie, B. micropflls, dexamethasone, antihistamine, cellular response.
    Matched MeSH terms: Ticks
  16. Ahmad NII, Rahim NAA, Roslan A, Adrus M, Ahamad M, Hassan M, et al.
    Data Brief, 2020 Jun;30:105621.
    PMID: 32395585 DOI: 10.1016/j.dib.2020.105621
    This data article presents on the ectoparasites infestation on small mammals in Peninsular Malaysia. The dataset on ectoparasites infestation is important because it raises a major medical concern regarding the spread of potentially zoonotic disease from wildlife to human. Tick and chigger are the primary ectoparasites as reservoirs of vector-borne diseases found on small mammals in Malaysia. These small mammals that are infested with ectoparasites occupy various types of habitats, including human settlements, could be of community health risks as the carriers of potentially zoonotic diseases. Field samplings were conducted from February 2015 to February 2016 in three different ecological habitats of mixed dipterocarp forest, coastal forest and insular forest, in Terengganu, Malaysia. A total of 35 and 22 species of bats and rodents respectively were captured and examined for ectoparasites. Twenty-three species of bats and 16 species of small mammal were recorded as hosts for at least one species of ectoparasites. These findings show that the highest ectoparasite infestation occurred on bat community.
    Matched MeSH terms: Ticks
  17. Asyikha R, Sulaiman N, Mohd-Taib FS
    Trop Biomed, 2020 Dec 01;37(4):919-931.
    PMID: 33612746 DOI: 10.47665/tb.37.4.919
    Bacteria of the genus Bartonella have been known as emerging zoonotic pathogens for several human diseases including cat scratch disease, Carrion's disease and trench fever. Numerous species of small mammals have been reported to play a role as a suitable reservoir to many pathogenic Bartonella. These infections are thought to be transmitted through blood-feeding arthropod vectors such as ticks, fleas and lice. The purpose of this study is to detect the presence of Bartonella species from tick samples collected from small mammals in mangrove forests of Peninsular Malaysia. Herein, 38 individual ticks and their small mammals host were evaluated for the presence of Bartonella DNA by conventional PCR targeting the 16S rRNA intergenic spacer region (ITS) and partial sequencing of 460 bp from this locususing Bartonella genus-specific primers. Two tick individuals from Dermacentor auratus and Haemaphysalis hystricis collected from Rattus tiomanicus (host), were PCR-positive for Bartonella DNA amplification. No Bartonella amplification was possible in other tick species (Amblyomma sp.). Phylogenetic analysis of ITS fragments demonstrated that the sequences from ticks were closely related to Bartonella phoceensis, a species that has been reported from black rats (Rattus rattus) in Australia. This is the first report of a Bartonella bacteria detected in ticks from small mammals in Malaysia. Further research should be warranted to investigate the transmission of Bartonella and the potential impact of this zoonotic pathogen in animals and humans as this mangrove ecosystem is significant for local economy and tourism.
    Matched MeSH terms: Ticks/microbiology*
  18. Low VL, Prakash BK, Tan TK, Sofian-Azirun M, Anwar FHK, Vinnie-Siow WY, et al.
    Vet Parasitol, 2017 Oct 15;245:102-105.
    PMID: 28969827 DOI: 10.1016/j.vetpar.2017.08.015
    Vector-borne infections are persistent public health threats worldwide. In recent years, a number of mosquito-borne viruses have emerged or re-emerged to cause major disease outbreaks. Other vector-borne pathogens, however, remain understudied and much neglected especially in the developing regions of the world including Southeast Asia. In this study, the brown dog tick Rhipicephalus sanguineus sensu lato, cat louse Felicola subrostratus, and cat fleas Ctenocephalides felis and Ctenocephalides orientis collected from free-ranging cats and dogs in Malaysia were molecularly screened for the presence of Bartonella and Rickettsia bacteria, and Dipylidium tapeworm. Our results showed the presence of Bartonella clarridgeiea, Bartonella henselae (lineage Marseille and lineage Houston-1), and Rickettsia sp. in C. felis. We also detected Rickettsia asembonensis in C. orientis and R. sanguineus s.l. Additionally, this study provides the first documentation on a potentially new species of Dipylidium infecting F. subrostratus and C. felis. Our results highlight the role of ectoparasites from free-ranging animals including cats and dogs, in harboring multiple transmissible pathogens.
    Matched MeSH terms: Ticks/microbiology*
  19. Walker PJ, Widen SG, Firth C, Blasdell KR, Wood TG, Travassos da Rosa AP, et al.
    Am J Trop Med Hyg, 2015 Nov;93(5):1041-51.
    PMID: 26324724 DOI: 10.4269/ajtmh.15-0344
    The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean-Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.
    Matched MeSH terms: Ticks/virology*
  20. Koh FX, Panchadcharam C, Sitam FT, Tay ST
    Vet Parasitol Reg Stud Reports, 2018 08;13:141-147.
    PMID: 31014863 DOI: 10.1016/j.vprsr.2018.05.006
    Anaplasma spp. are Gram-negative obligate intracellular, tick-borne bacteria which are of medical and veterinary importance. Little information is available on Anaplasma infection affecting domestic and wildlife animals in Malaysia. This study investigated the presence of Anaplasma spp. in the blood samples of domestic and wildlife animals in Peninsular Malaysia, using polymerase chain reaction (EHR-PCR) assays targeting the 16S rRNA gene of Anaplasmataceae. High detection rates (60.7% and 59.0%, respectively) of Anaplasma DNA were noted in 224 cattle (Bos taurus) and 78 deer (77 Rusa timorensis and one Rusa unicolor) investigated in this study. Of the 60 amplified fragments obtained for sequence analysis, Anaplasma marginale was exclusively detected in cattle while Anaplasma platys/Anaplasma phagocytophilum was predominantly detected in the deer. Based on sequence analyses of the longer fragment of the 16S rRNA gene (approximately 1000 bp), the occurrence of A. marginale, Anaplasma capra and Candidatus Anaplasma camelii in cattle, Candidatus A. camelii in deer and Anaplasma bovis in a goat was identified in this study. To assess whether animals were infected with more than one species of Anaplasma, nested amplification of A. phagocytophilum, A. bovis and Ehrlichia chaffeensis DNA was performed for 33 animal samples initially screened positive for Anaplasmataceae. No amplification of E. chaffeensis DNA was obtained from animals investigated. BLAST analyses of the 16S rDNA sequences from three deer (R. timorensis), a buffalo (Bubalus bubalis) and a cow (B. taurus) reveal similarity with that of Candidatus Anaplasma boleense strain (GenBank accession no.: KX987335). Sequence analyses of the partial gene fragments of major surface protein (msp4) gene from two deer (R. timorensis) and a monitor lizard (Varanus salvator) show the detection of a strain highly similar (99%) to that of A. phagocytophilum strain ZJ-China (EU008082). The findings in this study show the occurrence of various Anaplasma species including those newly reported species in Malaysian domestic and wildlife animals. The role of these animals as reservoirs/maintenance hosts for Anaplasma infection are yet to be determined.
    Matched MeSH terms: Ticks/microbiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links