Displaying publications 21 - 40 of 278 in total

Abstract:
Sort:
  1. George E, George R, Ilina I, Yasmin AM, Faridah K
    Family Physician, 1989;1:37-41.
    Matched MeSH terms: Thalassemia
  2. George E, Wong HB
    Family Physician, 1993;5:42-46.
    Matched MeSH terms: Thalassemia
  3. Bolton JM, Lie-Injo Luan Eng
    Med J Malaya, 1969 Sep;24(1):36-40.
    PMID: 4244260
    Matched MeSH terms: Thalassemia/complications*; Thalassemia/genetics; Thalassemia/epidemiology
  4. Hassan K, Vijayasilan T, Mahmood Z, Abdul Hamid H, Chin YM
    Singapore Med J, 1988 Oct;29(5):462-8.
    PMID: 3241975
    Whole blood samples from patients with various forms of alpha- and beta- thalassaemia were incubated with 14C-Leucine to determine the relative rates of production of the alpha and beta chains by their reticulocytes. The labelled globin chains were fractionated by CM-Cellulose Chromatography in 8M Urea and the incorporated activity determined. The relative rates of synthesis of alpha and beta chains in some cases of alpha and beta- thalassaemia were established and the chain synthetic ratios were compared with similar ratios in normal individuals. The results show that it is possible to identify from the relative rates of in-vitro synthesis of the alpha and beta chains, the presence of the common thalassaemia slates in particular beta-thal trait, beta-thal homozygotes, Hb H disease and alpha0-thal trait. The presence of transfused blood does not affect the result. This study indicates that an abnormal alpha/beta chain synthesis ratio is useful in defining alpha and beta-thalassaemia variants.
    Matched MeSH terms: Thalassemia/classification; Thalassemia/diagnosis; Thalassemia/metabolism*
  5. Rosline H, Ahmed SA, Al-Joudi FS, Rapiaah M, Naing NN, Adam NA
    PMID: 17120978
    The aim of this study was to screen and identify the types of thalassemia among blood donors at the Hospital Universiti Sains Malaysia (HUSM). Thalassemia screening was performed by hemoglobin electrophoresis. A total number of 80 blood samples were obtained from donors at the Transfusion Medicine Unit, HUSM. The ethnic origins of the donors were Malays (n=73, 91.3%) and non-Malays (n=7, 8.75%). Males comprised 88.1% of the donors. Thalassemia was detected in 16.25% (n=13) of the blood donors. Of those with thalassemia, 46.2% (6/13) were anemic. Microcytosis and hypochromia were detected in 84.6% (n=l1) and 84.6% (n=l1) of these donors, respectively. The types of thalassemias detected were Hb E, 11.25% (n=9/80) and beta thalassemia trait, 5% (n=4/80). Among the thalassemias detected, the Hb E hemoglobinopathy was comprised of Hb E/ alpha-thalassemia (38.5%: n=5), Hb E /beta-thalassemia (23.1%: n=3), Hb E trait (7.6%: n=1) and beta-thalassemia (30.8%: n=4). In conclusion, screening for thalassemia trait should be included as part of a standard blood testing before blood donation. Further studies are required to look at the effects of donated thalassemic blood.
    Matched MeSH terms: Thalassemia/blood*; Thalassemia/classification; Thalassemia/diagnosis
  6. Wee YC, Tan KL, Kuldip K, Tai KS, George E, Tan PC, et al.
    Community Genet, 2008;11(3):129-34.
    PMID: 18376108 DOI: 10.1159/000113874
    BACKGROUND/AIMS: Individuals with double heterozygosity for alpha- and beta-thalassaemia and heterozygous beta-thalassaemia show a similar haematological picture. Co-inheritance of alpha- and beta-thalassaemia in both partners may result in pregnancies with either Hb Bart's hydrops foetalis or beta-thalassaemia major, or pregnancies with both disorders.
    METHODS: The co-inheritance of alpha-thalassaemia in 322 beta-thalassaemia carriers in Malaysia was studied.
    RESULTS: The frequency of alpha-thalassaemia in the beta-thalassaemia carriers was 12.7% (41/322), with a carrier frequency of 7.8% for the SEA deletion, 3.7% for the -alpha(3.7) deletion, 0.9% for Hb Constant Spring and 0.3% for the -alpha(4.2) deletion.
    CONCLUSION: Double heterozygosity for alpha- and beta-thalassaemia was confirmed in 5 out of the 41 couples and the risk of the fatal condition Hb Bart's hydrops foetalis was confirmed in two of these couples. Detection of the Southeast Asian (SEA) deletion in the Malaysian Malays in this study confirms that Hb Bart's hydrops foetalis can occur in this ethnic group. Results of this study have provided new information on the frequency and different types of alpha-thalassaemia (--(SEA), -alpha(3.7) and -alpha(4.2) deletions, Hb Constant Spring) in Malaysian beta-thalassaemia carriers.
    Matched MeSH terms: alpha-Thalassemia/diagnosis; alpha-Thalassemia/ethnology; alpha-Thalassemia/genetics*; beta-Thalassemia/diagnosis; beta-Thalassemia/ethnology; beta-Thalassemia/genetics*
  7. Chong YM, Tan JA, Zubaidah Z, Rahimah A, Kuldip K, George E
    Med J Malaysia, 2006 Jun;61(2):217-20.
    PMID: 16898315
    Thalassaemia is an inherited blood disorder and is a significant public health problem in Malaysia, with many not knowing they carry the gene for thalassaemia. The two major forms are alpha and beta thalassaemia. An individual can co-inherit both the alpha and beta thalassaemia genes. This study determined the frequency of concurrent carriers of alpha thalassaemia in 231 beta thalassaemia carriers. Gap-PCR was done on extracted DNA of the beta thalassaemia samples to check for alpha thalassaemia 1 molecular defect. Eight (3.5%) samples were found to have concurrently inherited the alpha thalassaemia 1 (- -SEA) deletion. The significant carrier rate for alpha thalassaemia 1 indicates the need for the implementation of DNA analysis to complement thalassaemia screening in high risk populations.
    Matched MeSH terms: alpha-Thalassemia/complications; alpha-Thalassemia/genetics; alpha-Thalassemia/epidemiology*; beta-Thalassemia/complications; beta-Thalassemia/genetics; beta-Thalassemia/epidemiology*
  8. Kham SK, Yin SK, Quah TC, Loong AM, Tan PL, Fraser A, et al.
    J Pediatr Hematol Oncol, 2004 Dec;26(12):817-9.
    PMID: 15591902
    DNA technology provides a new avenue to perform neonatal screening tests for single-gene diseases in populations of high frequency. Thalassemia is one of the high-frequency single-gene disorders affecting Singapore and many countries in the malaria belt. The authors explored the feasibility of using PCR-based diagnostic screening on 1,116 unselected sequential cord blood samples for neonatal screening. The cord blood samples were screened for the most common reported alpha- and beta-thalassemia mutations in each ethnic group (Chinese, Malays, and Indians) in a multiracial population. The carrier frequency for alpha-thalassemia mutations was about 6.4% in the Chinese (alpha deletions = 3.9%, alpha deletions = 2.5%), 4.8% in Malays, and 5.2% in Indians. Only alpha deletions were observed in the Chinese. The carrier frequency for beta-thalassemia mutations was 2.7% in the Chinese, 6.3% in Malays, and 0.7% in Indians. Extrapolating to the population distribution of Singapore, the authors found a higher overall expected carrier frequency for alpha- and beta-thalassemia mutations of 9% compared with a previous population study of 6% by phenotype. The highly accurate results make this molecular epidemiologic screening an ideal method to screen for and prevent severe thalassemia in high-risk populations.
    Matched MeSH terms: alpha-Thalassemia/ethnology; alpha-Thalassemia/genetics*; alpha-Thalassemia/epidemiology*; beta-Thalassemia/ethnology; beta-Thalassemia/genetics*; beta-Thalassemia/epidemiology*
  9. Asit Sena, Saidatul Norbaya Buang, Mohd Shahriel Md Daud, Soh Chin Li, Zaleha Sulaiman, Kaharnisah Mat Noor, et al.
    MyJurnal
    Introduction: Thalassaemia is an autosomal recessive disorder affecting 5 percent of the Malaysian population. The state of Sabah has the highest number of transfusion dependent thalassaemia and β-thalassaemia carrier in Malay-sia. For Malaysia to be successful in the prevention of thalassaemia, Sabah needs to be focused on the preventive activities in areas with high prevalence of β-thalassaemia carriers. Thus, identifying the mapping of β-thalassaemia is crucial for planning for prevention activities. The objective of this study was to identify the prevalence of β-thalas-saemia by districts and ethnic groups in Sabah. Methods: This study used data from Form 4 Thalassaemia Screening Records in 2017. The data were cleaned and analysed using Excel spreadsheet to calculate for the national and state specific prevalence of β-thalassaemia carrier. Subsequently, the data was used for mapping of high-risk districts and ethnic groups in Sabah. Results: A total of 31,655 Form 4 students from 242 secondary schools were screened in Sa-bah in 2017 and 1150 (3.6%) were diagnosed as β-thalassemia carrier. The prevalence of β thalassaemia carrier was higher in the West Coast of Sabah which include Kota Marudi District (11.1%), Nabawan (9.0%), Tambunan (8%), Tongod (7.5%), Ranau (7.0%), Kota Belud (5.0%), Kudat (4.6%), Tenom (4.1%) and Tuaran (4.0%). In the East Coast of Sabah, there was only the Beluran District (5.0%) had prevalence that higher than the state average. β-thalassae-mia carriers were more likely to be of Dusun, Kadazan Dusun followed by Bajau, Murut and Rungus ethnic group. Conclusion: The distribution of β-thalassaemia carrier in Sabah was concentrated in the West Coast of Sabah and more common among the Dusun, Kadazan Dusun followed by Bajau, Murut and Rungus ethnic group. Thus, the thalassaemia prevention activities should be focuses in these areas and ethnic groups.
    Matched MeSH terms: Thalassemia; beta-Thalassemia
  10. Shazia Q, Mohammad ZH, Rahman T, Shekhar HU
    Anemia, 2012;2012:270923.
    PMID: 22645668 DOI: 10.1155/2012/270923
    Beta thalassemia major is an inherited disease resulting from reduction or total lack of beta globin chains. Patients with this disease need repeated blood transfusion for survival. This may cause oxidative stress and tissue injury due to iron overload, altered antioxidant enzymes, and other essential trace element levels. The aim of this review is to scrutinize the relationship between oxidative stress and serum trace elements, degree of damage caused by oxidative stress, and the role of antioxidant enzymes in beta thalassemia major patients. The findings indicate that oxidative stress in patients with beta thalassemia major is mainly caused by tissue injury due to over production of free radical by secondary iron overload, alteration in serum trace elements and antioxidant enzymes level. The role of trace elements like selenium, copper, iron, and zinc in beta thalassemia major patients reveals a significant change of these trace elements. Studies published on the status of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione S-transferase in beta thalassemia patients also showed variable results. The administration of selective antioxidants along with essential trace elements and minerals to reduce the extent of oxidative damage and related complications in beta thalassemia major still need further evaluation.
    Matched MeSH terms: beta-Thalassemia*
  11. Tan JA, Kok JL, Tan KL, Wee YC, George E
    Genes Genet Syst, 2009 Feb;84(1):67-71.
    PMID: 19420802
    Co-inheritance of alpha-thalassemia with homozygosity or compound heterozygosity for beta-thalassemia may ameliorate beta-thalassemia major. A wide range of clinical phenotypes is produced depending on the number of alpha-thalassemia alleles (-alpha/alphaalpha --/alphaalpha, --/-alpha). The co-inheritance of beta-thalassemia with alpha-thalassemia with a single gene deletion (-alpha/alphaalpha) is usually associated with thalassemia major. In contrast, the co-inheritance of beta-thalassemia with two alpha-genes deleted in cis or trans (--/alphaalpha or -alpha/-alpha) generally produces beta-thalassemia intermedia. In Southeast Asia, the most common defect responsible for alpha-thalassemia is the Southeast Asian (SEA) deletion of 20.5 kilobases. The presence of the SEA deletion with Hb Constant Spring (HbCS) produces HbH-CS disease. Co-inheritance of HbH-CS with compound heterozygosity for beta-thalassemia is very rare. This study presents a Malay patient with HbH-CS disorder and beta degrees/beta+-thalassemia. The SEA deletion was confirmed in the patient using a duplex-PCR. A Combine-Amplification Refractory Mutation System (C-ARMS) technique to simultaneously detect HbCS and Hb Quong Sze confirmed HbCS in the patient. Compound heterozygosity for CD41/42 and Poly A was confirmed using the ARMS. This is a unique case as the SEA alpha-gene deletion in cis (--SEA/alphaalpha) is generally not present in the Malays, who more commonly possess the two alpha-gene deletion in trans (-alpha/-alpha). In addition, the beta-globin gene mutation at CD41/42 is a common mutation in the Chinese and not in the Malays. The presence of both the SEA deletion and CD41/42 in the mother of the patient suggests the possible introduction of these two defects into the family by marriage with a Chinese.
    Matched MeSH terms: alpha-Thalassemia/complications; alpha-Thalassemia/diagnosis*; alpha-Thalassemia/genetics*; beta-Thalassemia/complications; beta-Thalassemia/diagnosis*; beta-Thalassemia/genetics*
  12. Wee YC, Tan KL, Chua KH, George E, Tan JA
    Malays J Med Sci, 2009 Jul;16(3):21-8.
    PMID: 22589661 MyJurnal
    BACKGROUND: The interaction of the non-deletional α(+)-thalassaemia mutations Haemoglobin Constant Spring and Haemoglobin Quong Sze with the Southeast Asian double α-globin gene deletion results in non-deletional Haemoglobin H disease. Accurate detection of non-deletional Haemoglobin H disease, which is associated with severe phenotypes, is necessary as these mutations have been confirmed in the Malaysian population.
    METHODS: DNA from two families with Haemoglobin H disease was extracted from EDTA-anticoagulated whole blood and subjected to molecular analysis for α-thalassaemia. A duplex polymerase chain reaction was used to detect the Southeast Asian α-globin gene deletion. Polymerase chain reaction-restriction fragment length polymorphism analysis was then carried out to determine the presence of Haemoglobin Constant Spring and Haemoglobin Quong Sze. A combine-amplification refractory mutation system protocol was optimised and implemented for the rapid and specific molecular characterisation of Haemoglobin Constant Spring and Haemoglobin Quong Sze in a single polymerase chain reaction.
    RESULTS AND CONCLUSIONS: The combine-amplification refractory mutation system for Haemoglobin Constant Spring and Haemoglobin Quong Sze, together with the duplex polymerase chain reaction, provides accurate pre- and postnatal diagnosis of non-deletional Haemoglobin H disease and allows detailed genotype analyses using minimal quantities of DNA.
    KEYWORDS: Combine-ARMS; Hb Constant Spring; Hb Quong Sze; medical sciences
    Matched MeSH terms: alpha-Thalassemia*
  13. Alauddin H, Mohamad Nasir S, Ahadon M, Raja Sabudin RZ, Ithnin A, Hussin NH, et al.
    Malays J Pathol, 2015 Dec;37(3):287-92.
    PMID: 26712677
    Haemoglobin (Hb) Lepore is a variant Hb consisting of two α-globin and two δβ-globin chains. In a heterozygote, it is associated with clinical findings of thalassaemia minor, but interactions with other haemoglobinopathies can lead to various clinical phenotypes and pose diagnostic challenges. We reported a pair of siblings from a Malay family, who presented with pallor and hepatosplenomegaly at the ages of 21 months and 14 months old. The red cell indices and peripheral blood smears of both patients showed features of thalassaemia intermedia. Other laboratory investigations of the patients showed conflicting results. However, laboratory investigation results of the parents had led to a presumptive diagnosis of compound heterozygote Hb Lepore/β-thalassaemia and co-inheritance α+-thalassaemia (-α3.7). Hb Lepore has rarely been detected in Southeast Asian countries, particularly in Malaysia. These two cases highlight the importance of family studies for accurate diagnosis, hence appropriate clinical management and genetic counseling.
    Matched MeSH terms: alpha-Thalassemia/blood; alpha-Thalassemia/genetics*; beta-Thalassemia/blood; beta-Thalassemia/genetics*
  14. Lie-Injo LE
    Blood, 1962 Nov;20:581-90.
    PMID: 13930509
    Five cases of severe hydrops and erythroblastosis fetalis in association with a large amount of Hb “Bart’s,” all of Chinese origin, are described. The following characteristic clinical and hematologic symptoms were found. There were generalized hydrops, ascites and gross enlargement of the liver. The spleen, however, was not ahvays enlarged. The placenta was large and friable. Severe erythroblastosis of the blood was always found, with reticulocytosis, many target cells and thin cells. The MCV of the red cells was very high. The cells showed an interesting sickling phenomenon. No evidence of isoimmunization was found. In eight parents examined, no abnormal hemoglobin was detected, and alkali-resistant hemoglobin and hemoglobin A2 were not found to be increased. Their blood showed microcytosis of the red cells cxcept in one father and one mother. In this mother, however, the blood was examimied after a blood transfusion. It is thought probable that these were cases of homozygous alpha-chain thalassemia.
    Matched MeSH terms: Thalassemia*; alpha-Thalassemia*; beta-Thalassemia*
  15. Wee SY, Muhamed Said SS, Raja Sabudin RZA, Alauddin H, Ithnin A
    Malays J Pathol, 2020 Aug;42(2):195-201.
    PMID: 32860371
    INTRODUCTION: Differentiating between thalassaemia and iron deficiency anaemia (IDA) in hypochromic anaemia is a challenge to pathologists as it influences the choice of subsequent specialized confirmatory tests. In this study, we aimed to evaluate the performance of microcytic to hypochromic ratio (MicroR/ Hypo-He, M/H ratio) as a discriminant index in hypochromic anaemia.

    MATERIALS AND METHODS: A retrospective study was carried out on 318 subjects with hypochromic anaemia, which comprised 162 IDA and 156 thalassaemia trait subjects with α-thalassemia, β-thalassemia and HbE trait. Optimal cut-off value, sensitivity and specificity of M/H ratio for thalassaemia trait discrimination was determined using Receiver Operating Characteristic (ROC) analysis.

    RESULTS: Subjects with thalassaemia trait showed higher MicroR compared to IDA ( p< 0.001) while subjects with IDA demonstrated higher Hypo-He than thalassaemia trait (p < 0.001). M/H ratio was significantly higher in thalassaemia trait compared to IDA, with medians of 3.77 (interquartile range: 2.57 - 6.52) and 1.73 (interquartile range: 1.27 - 2.38), respectively (p < 0.001). M/H ratio ≥ 2.25 was the optimal cut-off value for discriminating thalassaemia trait from IDA in hypochromic anaemia, with the area under ROC curve (AUC) of 0.83, sensitivity of 80.8% and specificity of 71.6%.

    CONCLUSIONS: M/H ratio is a useful discriminant index to distinguish thalassaemia trait from IDA in hypochromic anaemia prior to diagnostic analysis for thalassaemia confirmation. High M/H ratio is suggestive of thalassaemia trait than of IDA. However, more studies are required to establish the role of M/H ratio as a screening tool for thalassaemia discrimination in hypochromic anaemia.

    Matched MeSH terms: alpha-Thalassemia/diagnosis; alpha-Thalassemia/pathology; beta-Thalassemia/diagnosis; beta-Thalassemia/pathology
  16. Koh DXR, Raja Sabudin RZA, Mohd Yusoff M, Hussin NH, Ahmad R, Othman A, et al.
    Ann. Hum. Genet., 2017 Sep;81(5):205-212.
    PMID: 28620953 DOI: 10.1111/ahg.12201
    Thalassaemia is a public health problem in Malaysia, with each ethnic group having their own common mutations. However, there is a lack on data on the prevalence and common mutations among the indigenous people. This cross-sectional study was performed to determine the common mutations of α- and β-thalassaemia among the subethnic groups of Senoi, the largest Orang Asli group in Peninsular Malaysia. Blood samples collected from six Senoi subethnic groups were analysed for full blood count and haemoglobin analysis (HbAn). Samples with abnormal findings were then screened for α- and β-globin gene mutations. Out of the 752 samples collected, 255 showed abnormal HbAn results, and 122 cases showing abnormal red cell indices with normal HbAn findings were subjected to molecular screening. DNA analysis revealed a mixture of α- and β-globin gene mutations with 25 concomitant cases. The types of gene abnormalities detected for α-thalassaemia were termination codon (T>C) Hb CS (αCS α), Cd59 (G>A) haemoglobin Adana (Hb Adana) (αCd59 α), initiation codon (ATG>A-G) (αIniCd α), two-gene deletion (-SEA ), and single-gene 3.7-kb deletion (-α3.7 ). For β-thalassaemia, there were Cd26 (G>A) Hb E (βE ), Cd19 (A>G) Haemoglobin Malay (Hb Malay) (βCd19 ), and IVS 1-5 (G>C) (βIVS 1-5 ).
    Matched MeSH terms: alpha-Thalassemia/genetics*; alpha-Thalassemia/epidemiology; beta-Thalassemia/genetics*; beta-Thalassemia/epidemiology
  17. Yatim NF, Rahim MA, Menon K, Al-Hassan FM, Ahmad R, Manocha AB, et al.
    Int J Mol Sci, 2014 May 19;15(5):8835-45.
    PMID: 24857915 DOI: 10.3390/ijms15058835
    Both α- and β-thalassaemia syndromes are public health problems in the multi-ethnic population of Malaysia. To molecularly characterise the α- and β-thalassaemia deletions and mutations among Malays from Penang, Gap-PCR and multiplexed amplification refractory mutation systems were used to study 13 α-thalassaemia determinants and 20 β-thalassaemia mutations in 28 and 40 unrelated Malays, respectively. Four α-thalassaemia deletions and mutations were demonstrated. --SEA deletion and αCSα accounted for more than 70% of the α-thalassaemia alleles. Out of the 20 β-thalassaemia alleles studied, nine different β-thalassaemia mutations were identified of which βE accounted for more than 40%. We concluded that the highest prevalence of (α- and β-thalassaemia alleles in the Malays from Penang are --SEA deletion and βE mutation, respectively.
    Matched MeSH terms: alpha-Thalassemia/genetics*; alpha-Thalassemia/pathology; beta-Thalassemia/genetics*; beta-Thalassemia/pathology
  18. George E
    Ann Acad Med Singap, 1994 Jan;23(1):89-93.
    PMID: 7514384
    The clinical severity of the mutations causing beta-thalassaemia in West Malaysia is presented. Thalassaemia clinical scores (Thal CS), a scoring system, has been formulated to predict clinical severity. It is the type of beta-thalassaemia mutation present that decides on the clinical phenotype. The most severe beta-thalassaemia mutation is assigned a score of 4. A score of 8 indicates a severe thalassaemia phenotype. Alpha-thalassaemia, increased synthesis of Hb F, and glucose-6-phosphate deficiency may ameliorate the clinical condition at phenotype level, and the co-inheritance of hereditary ovalocytosis aggravates it.
    Matched MeSH terms: alpha-Thalassemia/diagnosis; beta-Thalassemia/diagnosis*; beta-Thalassemia/genetics*
  19. Mohamed N, Jackson N
    Blood Rev, 1998 Sep;12(3):163-70.
    PMID: 9745886
    In many of the parts of the world where thalassaemia is common, the blood supply is inadequate or unsafe, and desferrioxamine is too expensive for routine use. We classify some patients as having 'severe thalassaemia intermedia', i.e. those with moderately severe thalassaemia who can survive without regular transfusions, but who are at risk of many complications which are reviewed here. These include bone deformity and fractures, extramedullary haemopoietic tumours, leg ulcers, autoimmune haemolysis and, especially after splenectomy, thromboembolism and infection. An increase in the quality and safety of the blood supply, and a cheaper and/or oral iron chelator, would enable more of these patients to be treated as thalassaemia major and have improved survival and quality of life.
    Matched MeSH terms: Thalassemia/diagnosis*; Thalassemia/microbiology; Thalassemia/therapy*; Thalassemia/virology
  20. Hassan K
    PMID: 8629087
    Matched MeSH terms: alpha-Thalassemia/epidemiology*; beta-Thalassemia/genetics; beta-Thalassemia/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links