Carbon-based quantum dots (C-QDs) were synthesized through microwave-assisted carbonization of an aqueous starch suspension mediated by sulphuric and phosphoric acids. The as-prepared C-QDs showed blue, green and yellow luminescence without the addition of any surface-passivating agent. The C-QDs were further analyzed by UV-vis spectroscopy to measure the optical response of the organic compound. The energy gaps revealed narrow sizing of C-QDs in the semiconductor range. The optical refractive index and dielectric constant were investigated. The C-QDs size distribution was characterized. The results suggested an easy route to the large scale production of C-QDs materials.
A hybrid composite was prepared from cassava bagasse (CB) and sugar palm fiber (SPF) using casting technique with cassava starch (CS) as matrix and fructose as a plasticizer. Different loadings of SPF (2, 4, 6 and 8% w/w of dry starch) were added to the CS/CB composite film containing 6% CB. The addition of SPF significantly influenced the physical properties. It increased the thickness while decreasing the density, water content, water solubility and water absorption. However, no significant effect was noticed on the thermal properties of the hybrid composite film. The incorporation of SPF increased the relative crystallinity up to 47%, compared to 32% of the CS film. SEM micrographs indicated that the filler was incorporated in the matrix. The film with a higher concentration of SPF (CS-CB/SPF8) showed a more heterogeneous surface. It could be concluded that the incorporation of SPF led to changes in cassava starch film properties, potentially affecting the film performances.
The stability of a moisture-sensitive drug in tablet formulations depends particularly on the environment's relative humidity (RH) and the products' prior exposure to moisture. This study was designed to understand drug stability in relation to the moisture interaction of the excipients, moisture history of the tablets, and RH of the environment. The stability study was performed on tablets containing acetylsalicylic acid (ASA), formulated with common pharmaceutical excipients like native maize starch, microcrystalline cellulose (MCC), partially pregelatinized maize starch (PGS), dicalcium phosphate dihydrate (DCP), lactose, and mannitol. The tablets were subjected to storage conditions with RH cycling alternating between 53% and 75%. Results were also compared to tablets stored at a constant RH of 53% or 75%. The excipients demonstrated marked differences in their interactions with moisture. They could be broadly grouped as excipients with RH-dependent moisture content (native maize starch, MCC, and PGS) and RH-independent moisture content (DCP, lactose, and mannitol). As each excipient interacted differently with moisture, degradation of ASA in the tablets depended on the excipients' ability to modulate the moisture availability for degradation. The lowest ASA degradation was observed in tablets formulated with low moisture content water-soluble excipients, such as lactose and mannitol. The impact of RH cycling on ASA stability was apparent in tablets containing native maize starch, MCC, PGS, or DCP. These findings suggested that the choice of excipients influences the effect of moisture history on drug stability. The results from studies investigating moisture interaction of excipients and drug stability are valuable to understanding the inter-relationship between excipients, moisture history, and drug stability.
Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
The trend of incorporating faba bean (Vicia faba L.) in breadmaking has been increasing, but its application is still facing technological difficulties. The objective of this study was to understand the influence of substituting the wheat flour (WF) with 10, 20, 30 and 40 % mass of whole bean flour (FBF) or 10 and 20 % mass of faba bean protein-rich fraction (FBPI) on the quality (volume, specific volume, density, colour, and texture), nutritional composition (total starch, free glucose, and protein contents), and kinetics of in vitro starch and protein digestibility (IVSD and IVPD, respectively) of the breads. Automated image analysis algorithm was developed to quantitatively estimate the changes in the crumb (i.e., air pockets) and crust (i.e., thickness) due to the use of FBF or FBPI as part of the partial substitution of wheat flour. Higher levels of both FBF and FBPI substitution were associated with breads having significant (p starch content and improving the protein content and IVPD of wheat bread. Since bread remains as a staple food due to its convenience, versatility and affordability for individuals and families on a budget, wheat bread enriched with faba bean could be a perfect food matrix to increase daily protein intake.
In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.
This work presents the characterization of a novel naturally phosphorylated starch extracted from an unconventional and non-utilized source, the seeds of the stone fruit Syzygium malaccense. The morphology and chemical characteristics of the extracted starch were examined by scanning electron microscopy, FTIR, 1H/13C/31P NMR and 13C-CP/MAS-NMR, HPAEC-PAD chromatography, XRD, DSC, and RVA. The extraction yielded a highly pure starch (95.6 %) with an average granule size of 13 μm. The analysis of the starch components revealed an amylose content of 28.1 % and a predominance (65 %) of B-chains (B1-B3 65 %) in the amylopectin, as shown through HPAEC-PAD chromatography. The X-ray diffractogram was compatible with B-type starch, which was confirmed by the deconvolution of the C1 peak in the 13C-CP/MAS-NMR. X-Ray diffractogram also showed that S. malaccense has 28.5 % of crystallinity. DSC analysis showed values of 82.6 °C and -12.41 J g-1 for Tc and ΔH, respectively, which is compatible with a highly ordered starch granule structure. The values observed for peak (4678 mPa•s), trough (3055 mPa•s), and final viscosity (6526 mPa•s) indicated that S. malaccense may be used as a thickener in hot food.
We previously reported a novel method for the precise prediction of tablet properties (e.g., tensile strength (TS)) using a small number of experimental data. The key technique of this method is to compensate for the lack of experimental data by using data of placebo tablets collected in a database. This study provides further technical knowledge to discuss the usefulness of this prediction method. Placebo tablets consisting of microcrystalline cellulose, lactose, and cornstarch were prepared using the design of an experimental method, and their TS and disintegration time (DT) were measured. The response surfaces representing the relationship between the formulation and the tablet properties were then created. This study investigated tablets containing four different active pharmaceutical ingredients (APIs) with a drug load ranging from 20-60%. Overall, the TS of API-containing tablets could be precisely predicted by this method, while the prediction accuracy of the DT was much lower than that of the TS. These results suggested that the mode of action of APIs on the DT was more complicated than that on the TS. Our prediction method could be valuable for the development of tablet formulations.
An investigation on relationship among the physicochemical, optical and dielectric properties of the hydroxyapatite/cornstarch (HA/Cs) composites with the starch proportion of 30, 40, 50, 60, 70, 80 and 90 wt% is presented in this work. The HA/Cs composites have been characterized via FTIR, XRD, DRS and impedance analyzer. This work depicts that the strong interaction is exhibited between the hydroxyapatite nanoparticles and starch as the starch proportion increases. This increment trend results in the higher crystallinity of the HA/Cs composites. The highly crystallized HA/Cs with hydroxyapatite nucleation center presents low optical properties (diffuse reflectance and optical band gap energy). The HA/Cs composite with 80 wt% starch proportion (H2C8) show higher dielectric properties (dielectric constant, loss factor and conductivity) due to the stronger interfacial interaction and close-packed HA/Cs crystalline structure. The relationship among the physicochemical, optical and dielectric properties of the HA/Cs composite is studied in this work for potential of instrumentation design.
Proximate compositions, culinary and sensory properties of noodles prepared from proportionate combinations of breadfruit starch and wheat flour were investigated. Breadfruit starch (BS) isolated from matured breadfruit (Artocarpus altilis) was used to produce noodles in combination with hard red wheat flour (WF) at a ratio of 100% WF:0% BS, 80% WF:20% BS, 60% WF:40% BS, 40% WF:60% BS, 20% WF:80% BS. The protein, fat, ash, crude fibre and moisture contents of the Breadfruit starch-Wheat flour (BSWF) noodles prepared from the above blends ranged from 0.65 to 10.88%, 0.35 to 3.15%, 1.28 to 2.25%, 1.18 to 1.45% and 4.65 to 5.45%, respectively. The contents of protein, fat, ash and crude fibre increased as the percentage breadfruit starch decreased. However, values of moisture content did not follow the same trend, instead higher values were found for 100% BS:0% WF (5.35%) and 20% BS:80% WF (5.45%). The cooking yield of the BSWF noodles ranged from 21.02 (60% BS:40% WF) to 23.75 g (100% BS:0% WF), cooking loss ranged from 5.49 (20% BS:80% WF) to 9.19% (100% BS:0% WF), while swelling index ranged from 3.1 (20% BS:80% WF) to 3.4 (100% BS:0% WF). Throughout the study, noodles produced from blends of 20% breadfruit starch and 80% wheat flour showed superior proximate, culinary and sensory attributes.
This paper reviews reported studies on the hydrolysis of starch especially sago via acid and enzyme. The review begins with overview of sago palm and the starch industry, followed by process of extracting the starch from sago pith. Physicochemical properties of sago starch were tabulated for better understanding of hydrolysis process. Factors or process condition influencing hydrolysis process is discussed based on results from previous researches. Advantages and disadvantages of each hydrolysis is also discussed. Generally, there are very few researches dedicated on sago starch as compared to other starches. It can be concluded that, enzyme hydrolysis gives higher yield at milder process conditions. However, the reaction rate of enzyme hydrolysis is still low compared to acid hydrolysis.
Biscuit is a popular food product where it is produced using wheat flour, sugar and fat as its main ingredients. Wheat flour is the major material used in biscuit production and within the flour starch is the principal component. The details of starch properties such as pasting properties, gelatinisation properties, crystallinity were discussed in this review. Starch is the major structural element in many foods, with the fat or sugar also playing key roles. Sugar gives sweetness, colour, add volumes and influence the texture of a biscuit. Besides that, it shows significant impact on starch gelatinization properties. Fat plays an important role in biscuit production and the type of fat used determines the quality of the final product. In this article, the functional properties of major ingredients of biscuit were also reviewed with emphasis on wheat flour, sugar and fat.
The mechanical strength of magnetic lumen loaded handsheets was reported to be lower than the unloaded handsheets. This effect is due to the deposition of filler inside the fiber lumen and some on the fibre surface which interfere with the fibre to fibre bonding. Hence, in order to improve the handsheets strength, cationic starch is used as a dry strength additive. In this study, mixed tropical hardwood pulps were used throughout the experiment. The magnetite particles were deposited in the fibre lumen via the lumen loading technique. The addition of cationic starch was found to increase the handsheet strength. However, it disturbed and influenced the location and distribution of the magnetic fillers. Some of the magnetite particles were observed to be displaced from the fiber lumen and pit apertures. The charges of the filler particles and cationic starch played an important role in producing charge repulsion and pulling effect which lead to filler dislocation.
The accurate determination of reducing ends of malto-oligosaccharides is essential for calculating the enzyme activities of starch debranching enzymes. The suitability of the 3,5-Dinitrosalicylic acid (DNS) method, the Dygert method, and the Bicinchoninic acid (BCA) method for accurate determination of reducing ends from malto-oligosaccharides of different chain lengths is compared. The results showed that BCA assay was much more accurate than the other assays. The results for the BCA assay showed that different malto-oligosaccharides gave observed (measured) values that were significantly similar to the expected (predetermined) values. In contrast, the DNS and Dygert assays underestimated the amount of reducing sugar present for glucose. Furthermore, both DNS and Dygert methods showed increasing degree of overestimation of the amount of reducing sugar present with the increasing length of the malto-oligosaccharide sugar chains. The BCA assay can suitably quantify reducing sugars even in mixtures of oligosaccharides with different chain lengths. Thus, enzyme activities can be measured without bias towards higher values for enzymes that preferentially cleave the longer chain lengths.
The removal of concentrated colour (around 5039 Pt-Co) and chemical oxygen demand (COD; around 4142 mg L-1) from matured landfill leachate through a novel combination of humic acid extraction and coagulation with natural oil palm trunk starch (OPTS) was investigated in this study. Central composite design from response surface methodology of Design Expert-10 software executed the experimental design to correlate experimental factors with desired responses. Analysis of variance developed the quadratic model for four factors (e.g. coagulant dosage, slow mixing speed and time and centrifugation duration) and two responses (% removal of colour, COD). The model confirmed the highest colour (84.96%) and COD (48.84%) removal with a desirability function of 0.836 at the optimum condition of 1.68 g L-1 coagulant dose, 19.11 rpm slow mixing speed, 16.43 minutes for mixing time and 35.75 minutes for centrifugation duration. Better results of correlation coefficient (R2 = 0.98 and 0.96) and predicted R2 (0.94 and 0.84) indicates the model significance. Electron microscopic images display the amalgamation of flocs through bridging. Fourier transforms infrared spectra confirmed the existence of selected organic groups in OPTS, which eventually signifies the applied method.
Jackfruit is now receiving extensive attention as a new source of starch. However, jackfruit seeds are discarded as waste, although they are rich in starch. The functional properties of the starches were investigated from new Chinese jackfruit species. All the starches have a high amylose (26.56-38.34%) with a potential to become functional foods rich in resistant starch. The jackfruit starches varied from trigonal and tetragonal, round to semi-oval/bell shapes and showed significant variations in particle sizes (5.53-14.46μm). These variations led to significant differences in their functional properties, and significant correlations were found in their pasting, thermal, crystal and texture parameters. Hierarchical cluster analysis sorted the samples into three groups of 1) Malaysia 8 (M8) and ZhenZhu (ZZ); 2) Malaysia 2, Malaysia 3 and Malaysia 4, (M2, M3, M4); and 3) Xiangyinsuo 11, Xiangyinsuo 4, Xiangyinsuo 3 and Xiangyinsuo 2 (X11, X4, X3, X2). The first group could be used as food thickening or gelling agents. The second group could be applied in glutinous foods. The third group make them suitable for fillings in confectionery or weaning foods.
Octenyl succinic anhydride (OSA) modified sago starch was prepared in order to improve the emulsification properties of native starch. In the present study, the major factors affecting esterification were investigated with respect to OSA concentration, pH and reaction time using response surface methodology (RSM) based on central composite rotatable design (CCRD) to obtain the highest value of degree of substitution (DS). Results shown that the optimum conditions for OSA concentration, pH and reaction time were 5.00%, pH 7.20 and 9.65 h, respectively. At optimum condition, the esterification of sago starch with OSA resulted in DS value of 0.0120. The DS increased linearly with the increase in amount of OSA, whilst pH and reaction time show a curvature trend on the value of DS. The value of DS was found to be significantly affected by all the three variables. The experimental values under optimum condition were in good consistent with the predicted values (0.0131), which suggested that the optimisation by RSM is more efficient process than conventional optimisation.
Plastic throughout the years is now one of the biggest world commodities and also the largest pollution to have an environmental impact, accumulating in landfills and also leaching into water systems and oceans. Especially with the shift to single-use disposable plastic, evermore positions plastics as the number one novel entity that pollutes the earth. This shift is also consistent in the food packaging industry. Managing plastic waste is still an issue at large, while the process of pyrolysis incineration still requires an obscene amount of energy that also does not resolve the problems with its environmental impact, the cost of mechanical-chemical degradation even outweighs the cost of producing the materials, and biodegradation process is a very slow and long process. Converting to bioplastics is one of the potential solutions to the global plastic issue. This review covers the potentials, limitations, challenges, progress and advancements of bioplastics, especially thermoplastic starch (starch-based bioplastic) in their efforts to replace petroleum plastics in food packaging and smart food packaging, especially for single-use (disposable) food packaging.
The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature.
Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties.