The brain neurotransmitter level is associated with the pathology of various neurodegenerative diseases, and age-dependent increase in the blood level of vasopressin, human brain monoamine oxidase (hMAO) level, oxidative stress, and imbalance in aminergic signaling are common disease-modifying factors leading to various neurodegenerative disorders. Based on the reports of emodin in hMAO inhibition and antagonist effect on the vasopressin V1A receptor, in this study we synthesized six emodin derivatives and evaluated their effects on MAO activity and G protein-coupled receptors. Among them, 4-hydroxyemodin and 5-hydroxyemodin were potent inhibitors of hMAO, and 2-hydroxyemodin and 5-hydroxyemodin were good V1AR antagonists. In silico molecular docking simulation revealed that the hydroxyl group at C2, C4, and C5 of the respective compounds interacted with prime residues, which corroborates the in vitro effect. Likewise, these three derivatives were predicted to have good drug-like properties. Overall, our study demonstrates that the hydroxyl derivatives of emodin are multi-target-directed ligands that may act as leads for the design and development of a therapy for central nervous system disorders.
G protein-coupled receptors (GPCRs) are proteins of pharmaceutical importance, with over 30% of all drugs in clinical use targeting them. Increasing numbers of X-ray crystal (XRC) structures of GPCRs offer a wealth of data relating to ligand binding. For the β-adrenoceptors (β-ARs), XRC structures are available for human β2- and turkey β1-subtypes, in complexes with a range of ligands. While these structures provide insight into the origins of ligand structure-activity relationships (SARs), questions remain. The ligands in all published complexed XRC structures lack extensive substitution, with no obvious way the ligand-binding site can accommodate β1-AR-selective antagonists with extended side-chains para- to the common aryloxypropanolamine pharmacophore. Using standard computational docking tools with such ligands generally returns poses that fail to explain known SARs. Application of our Active Site Pressurization (ASP) modelling method to β-AR XRC structures and homology models however, reveals a dynamic area in the ligand-binding pocket that, through minor changes in amino acid side chain orientations, opens a fissure between transmembrane (TM) helices H4 and H5, exposing intra-membrane space. This fissure, which we term the 'keyhole', is ideally located to accommodate extended moieties present in many high-affinity β1-AR-selective ligands; allowing the rest of the ligand structure to adopt a canonical pose in the orthosteric binding site. We propose the keyhole may be a feature of both β1- and β2-ARs, but that subtle structural differences exist between the two, contributing to subtype-selectivity. This has consequences for the rational design of future generations of subtype-selective ligands for these therapeutically important targets.
Long coronavirus disease (COVID) has emerged as a global health issue, affecting a substantial number of people worldwide. However, the underlying mechanisms that contribute to the persistence of symptoms in long COVID remain obscure, impeding the development of effective diagnostic and therapeutic interventions. In this study, we utilized computational methods to examine the gene expression profiles of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and their associations with the wide range of symptoms observed in long COVID patients. Using a comprehensive data set comprising over 255 symptoms affecting multiple organ systems, we identified differentially expressed genes and investigated their functional similarity, leading to the identification of key genes with the potential to serve as biomarkers for long COVID. We identified the participation of hub genes associated with G-protein-coupled receptors (GPCRs), which are essential regulators of T-cell immunity and viral infection responses. Among the identified common genes were CTLA4, PTPN22, KIT, KRAS, NF1, RET, and CTNNB1, which play a crucial role in modulating T-cell immunity via GPCR and contribute to a variety of symptoms, including autoimmunity, cardiovascular disorders, dermatological manifestations, gastrointestinal complications, pulmonary impairments, reproductive and genitourinary dysfunctions, and endocrine abnormalities. GPCRs and associated genes are pivotal in immune regulation and cellular functions, and their dysregulation may contribute to the persistent immune responses, chronic inflammation, and tissue abnormalities observed in long COVID. Targeting GPCRs and their associated pathways could offer promising therapeutic strategies to manage symptoms and improve outcomes for those experiencing long COVID. However, the complex mechanisms underlying the condition require continued study to develop effective treatments. Our study has significant implications for understanding the molecular mechanisms underlying long COVID and for identifying potential therapeutic targets. In addition, we have developed a comprehensive website (https://longcovid.omicstutorials.com/) that provides a curated list of biomarker-identified genes and treatment recommendations for each specific disease, thereby facilitating informed clinical decision-making and improved patient management. Our study contributes to the understanding of this debilitating disease, paving the way for improved diagnostic precision, and individualized therapeutic interventions.
A handful of bioactive compounds from plants have been reported to possess platelet-activating factor (PAF) antagonist activity. However, their mode of action is not well understood. Selected bioactive compounds that exhibit PAF antagonist activity and synthetic PAF antagonists were subjected to docking simulations using the MOE 2007.09 software package. The docking study of PAF antagonists was carried out on the PAF receptor (PAFR) protein which involves in various pathological responses mediated by PAF. The docking results revealed that amentoflavone (3) showed good interactions with the PAFR model where the flavone and phenolic moieties were mostly involved in these interactions. Knowledge on PAF antagonists' interactions with the PAFR model is a useful screening tool of potential PAF antagonists prior to performing PAF inhibitory assay.
There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.
Phytochemical investigation on the bark of Goniothalamus tapis Miq. and G. uvaroides King has resulted in the isolation of eight styryl-lactones, (-)-cryptomeridiol, liriodenine, 3-methyl-1H-benz[f]indole-4,9-dione, (-)-stigmasterol and dimethyl terephthalate. The structures of the compounds were elucidated by spectroscopic techniques. The compounds were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using (3) H-PAF as a ligand. Among the compounds tested, (-)-cryptomeridiol, (+)-goniothalamin and (+)-isoaltholactone exhibited a significant and concentration-dependent inhibitory effect on PAF receptor binding, with inhibitory concentration (IC)(50) values of 17.5, 19.7 and 46.5 µm, respectively. The inhibitory effects of the first two compounds were comparable to that obtained from the positive control, cedrol. The results indicated that these compounds were strong PAF receptor binding inhibitors.
Ovarian steroids such as estrogen and progesterone have been reported to influence knee laxity. The effect of testosterone, however, remains unknown. This study investigated the effect of testosterone on the knee range of motion (ROM) and the molecular mechanisms that might involve changes in the expression of relaxin receptor isoforms, Rxfp1 and Rxfp2 in the patella tendon and lateral collateral ligament of the female rat knee. Ovariectomized adult female Wistar rats received three days treatment with peanut oil (control), testosterone (125 and 250 μg/kg) and testosterone (125 and 250 μg/kg) plus flutamide, an androgen receptor blocker or finasteride, a 5α-reductase inhibitor. Duplicate groups received similar treatment however in the presence of relaxin (25 ng/kg). A day after the last drug injection, knee passive ROM was measured by using a digital miniature goniometer. Both tendon and ligament were harvested and then analysed for protein and mRNA expression for Rxfp1 and Rxfp2 respectively. Knee passive ROM, Rxfp1 and Rxfp2 expression were significantly reduced following treatment with testosterone. Flutamide or finasteride administration antagonized the testosterone effect. Concomitant administration of testosterone and relaxin did not result in a significant change in knee ROM as compared to testosterone only treatment; however this was significantly increased following flutamide or finasteride addition. Testosterone effect on knee passive ROM is likely mediated via dihydro-testosterone (DHT), and involves downregulation of Rxfp1 and Rxfp2 expression, which may provide the mechanism underlying testosterone-induced decrease in female knee laxity.
The methanol extract of the leaves of Garcinia nervosa var. pubescens King, which showed strong inhibitory effects on platelet-activating factor (PAF) receptor binding, was subjected to bioassay-guided isolation to obtain a new biflavonoid, II-3,I-5, II-5,II-7,I-4',II-4'-hexahydroxy-(I-3,II-8)-flavonylflavanonol together with two known flavonoids, 6-methyl-4'-methoxyflavone and acacetin. The structures of the compounds were elucidated by spectroscopic methods. The compounds were evaluated for their ability to inhibit PAF receptor binding to rabbit platelets using ³H-PAF as a ligand. The biflavonoid and acacetin showed strong inhibition with IC₅₀ values of 28.0 and 20.4 µM, respectively. The results suggest that these compounds could be responsible for the strong PAF antagonistic activity of the plant.
The high risk of knee injuries in female may be associated with sex-steroid hormone fluctuations during the menstrual cycle by its effect on ligaments and tendons stiffness. This study examined changes in knee range of motion in presence of estrogen and progesterone and investigated the interaction of their antagonists to relaxin receptors.
Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transduction pathway that conveys the inhibitory action of GnIH in GnRH neurons by using the GnRH neuronal cell line, GT1-7. We examined whether GnIH inhibits the action of kisspeptin and vasoactive intestinal polypeptide (VIP), positive regulators of GnRH neurons. Although GnIH significantly suppressed the stimulatory effect of kisspeptin on GnRH release in hypothalamic culture, GnIH had no inhibitory effect on kisspeptin stimulation of serum response element and nuclear factor of activated T-cell response element activities and ERK phosphorylation, indicating that GnIH may not directly inhibit kisspeptin signaling in GnRH neurons. On the contrary, GnIH effectively eliminated the stimulatory effect of VIP on p38 and ERK phosphorylation, c-Fos mRNA expression, and GnRH release. The use of pharmacological modulators strongly demonstrated the specific inhibitory action of GnIH on the adenylate cyclase/cAMP/protein kinase A pathway, suggesting a common inhibitory mechanism of GnIH action in GnRH neurons and gonadotropes.-Son, Y. L., Ubuka, T., Soga, T., Yamamoto, K., Bentley, G. E., Tsutsui, K. Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7.
CXCR3 is a CXC chemokine receptor 3 which binds to CXC ligand 4 (CXCL4), 9, 10 and 11. CXC chemokine receptor 3a (CXCR3a) is one of the splice variants of CXCR3. It plays crucial role in defense and other physiological processes. In this study, we report the molecular cloning, characterization and gene expression of CXCR3a from striped murrel Channa striatus (Cs). The full length CsCXCR3a cDNA sequence was obtained from the constructed cDNA library of striped murrel by cloning and sequencing using an internal sequencing primer. The full length sequence is 1425 nucleotides in length including an open reading frame of 1086 nucleotides which is encoded with a polypeptide of 361 amino acids (mol. wt. 40 kDa). CsCXCR3a domain analysis showed that the protein contains a G protein coupled receptor between 55 and 305 along with its family signature at 129-145. The transmembrane prediction analysis showed that CsCXCR3a protein contains 7 transmembrane helical regions at 34-65, 80-106, 113-146, 154-181, 208-242, 249-278 and 284-308. The 'DRY' motif from CsCXCR3a protein sequence at (140)Asp-(141)Arg-(142)Tyr which is responsible for G-protein binding is also highly conserved with CXCR3 from other species. Phylogenetic tree showed that the CXC chemokine receptors 3, 4, 5 and 6, each formed a separate clade, but 1 and 2 were clustered together, which may be due to the high similarity between these receptors. The predicted 3D structure revealed cysteine residues, which are responsible for 'CXC' motif at 116 and 198. The CsCXR3a transcript was found to be high in kidney, further its expression was up-regulated by sodium nitrite acute toxicity exposure, fungal, bacterial and poly I:C challenges. Overall, these results supported the active involvement of CsCXCR3a in inflammatory process of striped murrel during infection. However, further study is necessary to explore the striped murrel chemokine signaling pathways and their roles in defense system.
It has long been known that spatial memory and the ability to navigate through space are sexually dimorphic traits among mammals, and numerous studies have shown that these traits can be altered by means of sex hormone manipulation. Hippocampus, the main organ involved in this kind of memory, has specific signature genes with high expression level compared to other regions of the brain. Based on their expression levels and the role that products of these genes can play in processes like signal transduction, mediation of hormone effects and long term potentiation, these genes can be considered as genes necessary for routine tasks of hippocampus. Male and female rat pups were injected with estradiol and testosterone respectively. at early stage of their lives to examine the effect of sex hormone manipulation on mRNA expression of Slc9a4, Nr3c2, Htr5b and Mas1 using comparative quantitative real-time polymerase chain reaction. The results showed that expressions of these genes are strongly influenced by sex hormones in both the frontal cortex and hippocampus, especially in male hippocampus, in which expression of all genes were up-regulated. Htr5b was the only gene that was affected only in the males. Expression of Mas1 was contrary to expectations, showed stronger changes in its expression in cortex than in hippocampus. Nr3c2 was down regulated in all samples but up regulated in male hippocampus, and Slc9a4 also showed a huge up-regulation in male hippocampus compared to other samples.
The Kiss1/KISS1 gene has recently been implicated as a potent hypothalamic regulator of reproductive functions, in particular, the onset of puberty in mammals. In zebrafish (Danio rerio), there are two kiss1 homologues (kiss1 and kiss2) expressed in the brain: Kiss2-expressing neurons in the hypothalamic nuclei are considered potent regulators of reproduction, whereas the role of Kiss1-expressing neurons in the habenula remains unknown. We first analyzed the expression of kiss1 mRNA in a transgenic zebrafish, in which the habenula-interpeduncular nucleus (IPN) pathway is labelled with green fluorescent protein, and our application of a biocytin neural tracer into the habenula showed the presence of neuronal projections of Kiss1 neurons to the ventral IPN. Therefore, we speculated that kiss1 neurons might regulate the serotonergic system in the raphe. However, laser microdissection followed by real-time PCR revealed the expression of Kiss1 receptor (kissr1) mRNA in the habenula and the ventral IPN but not in the dorsal IPN or the serotonergic neurons in the raphe nuclei. Dual-fluorescent in situ hybridization revealed the coexpression of kiss1 and kissr1 mRNA in the habenula. Administration of Kiss1 significantly decreased the level of kiss1 mRNA (0.3- to 0.5-fold, P < 0.001), but the level of c-fos mRNA was increased (≈ 3-fold, P < 0.05) in the ventral habenula, suggesting that there is autocrine regulation of the kiss1 gene. Kiss1 administration significantly increased the c-fos mRNA levels in the raphe nuclei (2.5-fold, P < 0.001) and genes involved in the regulation of serotonin levels (pet1 and slc6a4a; 3.3- and 2.2-fold, P < 0.01). These findings suggest that the autocrine-regulated habenular Kiss1 neurons indirectly regulate the serotonergic system in the raphe nuclei through the IPN in the zebrafish.
Nine essential oils, hydrodistilled from different parts of five Goniothalamus species (G. velutinus Airy-Shaw, G. woodii Merr., G. clemensii Ban, G. tapis Miq. and G. tapisoides Mat Salleh) were evaluated for their ability to inhibit platelet aggregation in human whole blood using an electrical impedance method and their inhibitory effects on platelet activating factor (PAF) receptor binding with rabbit platelets using 3H-PAF as a ligand. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The bark oil of G. velutinus was the most effective sample as it inhibited both arachidonic acid (AA) and ADP-induced platelet aggregation with IC(50) values of 93.6 and 87.7 microg/mL, respectively. Among the studied oils, the bark oils of G. clemensii, G. woodii, G. velutinus and the root oil of G. tapis showed significant inhibitory effects on PAF receptor binding, with IC(50 )values ranging from 3.5 to 10.5 microg/mL. The strong PAF antagonistic activity of the active oils is related to their high contents of sesquiterpenes and sesquiterpenoids, and the individual components in the oils could possibly produce a synergistic effect in the overall antiplatelet activity of the oils.
Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).
The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
The leaf, stem and root extracts of Chromolaena odorata were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using 3H-PAF as a ligand. The leaf extract demonstrated high PAF receptor binding inhibitory activity of 79.2+/-2.1% at 18.2 microg/ml. A total of eleven flavonoids were subsequently isolated from the active leaf extract and evaluated for their effects on PAF receptor binding. Eight of the flavonoids exhibited >50% inhibition on the binding activity at 18.2 microg/ml. These flavonoids were identified as eriodictyol 7,4'-dimethyl ether, quercetin 7,4'-methyl ether, naringenin 4'-methyl ether, kaempferol 4'-methyl ether, kaempferol 3-O-rutinoside, taxifolin 4'-methyl ether, taxifolin 7-methyl ether and quercetin 4'-methyl ether. Their IC50 values ranged from 19.5 to 62.1 microM.
Bile acids are recognised as bioactive signalling molecules. While they are known to influence arrhythmia susceptibility in cholestasis, there is limited knowledge about the underlying mechanisms. To delineate mechanisms underlying fetal heart rhythm disturbances in cholestatic pregnancy, we used FRET microscopy to monitor cAMP release and contraction measurements in isolated rodent neonatal cardiomyocytes. The unconjugated bile acids CDCA, DCA and UDCA and, to a lesser extent, CA were found to be relatively potent agonists for the GPBAR1 (TGR5) receptor and elicit cAMP release, whereas all glyco- and tauro- conjugated bile acids are weak agonists. The bile acid-induced cAMP production does not lead to an increase in contraction rate, and seems to be mediated by the RI isoform of adenylate cyclase, unlike adrenaline-dependent release which is mediated by the RII isoform. In contrast, bile acids elicited slowing of neonatal cardiomyocyte contraction indicating that other signalling pathways are involved. The conjugated bile acids were found to be partial agonists of the muscarinic M2, but not sphingosin-1-phosphate-2, receptors, and act partially through the Gi pathway. Furthermore, the contraction slowing effect of unconjugated bile acids may also relate to cytotoxicity at higher concentrations.
Rubraxanthone and isocowanol isolated from Garcinia parvifolia Miq. were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets using 3H-PAF as a ligand. Rubraxanthone showed a strong inhibition with IC 50 value of 18.2 microM. The IC 50 values of macluraxanthone, 6-deoxyjacareubin, 2-(3-methylbut-2-enyl)-1,3,5-trihydroxyxanthone, 2-(3-methylbut-2-enyl)-1,3,5,6-tetrahydroxyxanthone and 1,3,5-trihydroxy-6,6'-dimethylpyrano(2',3':6,7)-4-(1,1-dimethylprop-2-enyl)-xanthone were also determined for comparison. In the course of our study on structure-activity relationship of xanthones, the results revealed that a geranyl group substituted at C-8 was beneficial to the binding while a hydroxylated prenyl group at C-4 resulted in a significant loss in binding to the PAF receptor.
Phylligenine, together with quebrachitol, stigmasterol and two aporphine alkaloids--oxoputerine and liriodenine--were isolated from the twigs of Mitrephora vulpina C.E.C. Fisch. They were evaluated for their ability to inhibit platelet activating factor (PAF) receptor binding to rabbit platelets using 3H-PAF as a ligand and their antiplatelet aggregation effect in human whole blood induced by arachidonic acid (AA), collagen and adenosine diphosphate (ADP). Of all the compounds tested, phylligenin and quebrachitol exhibited potent and concentration-dependent inhibitory effects on PAF receptor binding, with IC(50) values of 13.1 and 42.2 µM, respectively. The IC(50) value of phylligenin was comparable to that of cedrol (10.2 µM), a potent PAF antagonist. Phylligenin also showed strong dose-dependent inhibitory activity on platelet aggregation induced by AA and ADP.