Displaying publications 21 - 40 of 46 in total

Abstract:
Sort:
  1. Nair RS, Nair S
    Curr Drug Deliv, 2015;12(5):517-23.
    PMID: 25675336
    Mortality rate due to heart diseases increases dramatically with age. Captopril is an angiotensin converting enzyme inhibitor (ACE) used effectively for the management of hypertension. Due to short elimination half-life of captopril the oral dose is very high. Captopril is prone to oxidation and it has been reported that the oxidation rate of captopril in skin tissues is considerably low when compared to intestinal tissues. All these factors make captopril an ideal drug candidate for transdermal delivery. In this research work an effort was made to formulate transdermal films of captopril by utilizing polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as film formers and polyethylene glycol 400 (PEG400) as a plasticizer. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were used as permeation enhancers. Physicochemical parameters of the films such as appearance, thickness, weight variation and drug content were evaluated. The invitro permeation studies were carried out through excised human cadaver skin using Franz diffusion cells. The in-vitro permeation studies demonstrated that the film (P4) having the polymer ratio (PVP:PVA = 80:20) with DMSO (10%) resulted a promising drug release of 79.58% at 24 hours with a flux of 70.0 µg/cm(2)/hr. No signs of erythema or oedema were observed on the rabbit skin as a result of skin irritation study by Draize test. Based on the stability report it was confirmed that the films were physically and chemically stable, hence the prepared films are very well suited for transdermal application.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  2. Kupaei RH, Alengaram UJ, Jumaat MZ
    ScientificWorldJournal, 2014;2014:898536.
    PMID: 25531006 DOI: 10.1155/2014/898536
    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  3. Idris A, Misran E, Hassan N, Abd Jalil A, Seng CE
    J Hazard Mater, 2012 Aug 15;227-228:309-16.
    PMID: 22682796 DOI: 10.1016/j.jhazmat.2012.05.065
    In this study magnetic separable photocatalyst beads containing maghemite nanoparticles (γ-Fe(2)O(3)) in polyvinyl alcohol (PVA) polymer were prepared and used in the reduction of Cr(VI) to Cr(III) in an aqueous solution under sunlight. The unique superparamagnetic property of the photocatalyst contributed by the γ-Fe(2)O(3) and robust property of PVA polymer allow the magnetic beads to be recovered easily and reused for at least 7 times without washing. The concentration of γ-Fe(2)O(3) was varied from 8% (v/v) to 27% (v/v) and the results revealed that the beads with 8% (v/v) γ-Fe(2)O(3) exhibited the best performance where Cr(VI) was reduced to Cr(III) in only 30 min under sunlight. The use of the PVA has improved the bead properties and life cycle of beads which is in line with sustainable practices.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  4. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  5. Ngadiman NH, Yusof NM, Idris A, Misran E, Kurniawan D
    Mater Sci Eng C Mater Biol Appl, 2017 Jan 01;70(Pt 1):520-534.
    PMID: 27770924 DOI: 10.1016/j.msec.2016.09.002
    The use of electrospinning process in fabricating tissue engineering scaffolds has received great attention in recent years due to its simplicity. The nanofibers produced via electrospinning possessed morphological characteristics similar to extracellular matrix of most tissue components. Porosity plays a vital role in developing tissue engineering scaffolds because it influences the biocompatibility performance of the scaffolds. In this study, maghemite (γ-Fe2O3) was mixed with polyvinyl alcohol (PVA) and subsequently electrospun to produce nanofibers. Five factors; nanoparticles content, voltage, flow rate, spinning distance, and rotating speed were varied to produce the electrospun nanofibrous mats with high porosity value. Empirical model was developed using response surface methodology to analyze the effect of these factors to the porosity. The results revealed that the optimum porosity (90.85%) was obtained using 5% w/v nanoparticle content, 35kV of voltage, 1.1ml/h volume flow rate of solution, 8cm spinning distance and 2455rpm of rotating speed. The empirical model was verified successfully by performing confirmation experiments. The properties of optimum PVA/γ-Fe2O3 nanofiber mats such as fiber diameter, mechanical properties, and contact angle were investigated. In addition, cytocompatibility test, in vitro degradation rate, and MTT assay were also performed. Results revealed that high porosity biodegradable γ-Fe2O3/polyvinyl alcohol nanofiber mats have low mechanical properties but good degradation rates and cytocompatibility properties. Thus, they are suitable for low load bearing biomedical application or soft tissue engineering scaffold.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  6. Qi J, Zhang H, Wang Y, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2018;13:2777-2788.
    PMID: 29785105 DOI: 10.2147/IJN.S151242
    Introduction: Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions.

    Materials and methods: In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites.

    Results: The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs).

    Conclusion: The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.

    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  7. Khan MUA, Iqbal I, Ansari MNM, Razak SIA, Raza MA, Sajjad A, et al.
    Molecules, 2021 Sep 30;26(19).
    PMID: 34641480 DOI: 10.3390/molecules26195937
    The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  8. Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA
    Int J Biol Macromol, 2021 Oct 31;189:464-476.
    PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160
    A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  9. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  10. Ndlovu ST, Ullah N, Khan S, Ramharack P, Soliman M, de Matas M, et al.
    Drug Deliv Transl Res, 2019 Feb;9(1):284-297.
    PMID: 30387048 DOI: 10.1007/s13346-018-00596-w
    The aim of this study was to employ experimental and molecular modelling approaches to use molecular level interactions to rationalise the selection of suitable polymers for use in the production of stable domperidone (DOMP) nanocrystals with enhanced bioavailability. A low-energy antisolvent precipitation method was used for the preparation and screening of polymers for stable nanocrystals of DOMP. Ethyl cellulose was found to be very efficient in producing stable DOMP nanocrystals with particle size of 130 ± 3 nm. Moreover, the combination of hydroxypropyl methylcellulose and polyvinyl alcohol was also shown to be better in producing DOMP nanocrystals with smaller particle size (200 ± 3.5 nm). DOMP nanosuspension stored at 2-8 °C and at room temperature (25 °C) exhibited better stability compared to the samples stored at 40 °C. Crystallinity of the unprocessed and processed DOMP was monitored by differential scanning calorimetry and powder X-ray diffraction. DOMP nanocrystals gave enhanced dissolution rate compared to the unprocessed drug substance. DOMP nanocrystals at a dose of 10 mg/kg in rats showed enhanced bioavailability compared to the raw drug substance and marketed formulation. A significant increase in plasma concentration of 2.6 μg/mL with a significant decrease in time (1 h) to reach maximum plasma concentration was observed for DOMP nanocrystals compared to the raw DOMP. Molecular modelling studies provided underpinning knowledge at the molecular level of the DOMP-polymer nanocrystal interactions and substantiated the experimental studies. This included an understanding of the impact of polymers on the size of nanocrystals and their associated stability characteristics.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  11. Almurisi SH, Mohammed A, Qassem F, Jehad H, Jassim A, Al-Japairai K, et al.
    Curr Drug Discov Technol, 2024;21(3):46-55.
    PMID: 37807409 DOI: 10.2174/0115701638262447230920061222
    AIM: This study aimed to formulate and characterize aceclofenac buccal film formulations made of different polymers and evaluate the effects of polymer type on buccal film properties.

    MATERIALS AND METHODS: Five polymer types, namely hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (SCMC), polyvinyl alcohol (PVA), Eudragit S100, and Eudragit SR100, were used to prepare aceclofenac buccal film formulation either separately or combined by solvent-casting method. These formulations were evaluated in terms of physical appearance, folding test, film weight and thickness, drug content, percentage of elongation, moisture uptake, water vapor permeability, and in vitro drug release.

    RESULTS: The addition of Eudragit polymer in most of the produced buccal films was unacceptable with low folding endurance. However, the dissolution profile of buccal films made from PVA and Eudragit SR100 provided a controlled drug release profile.

    CONCLUSION: Buccal films can be formulated using different polymers either individually or in combination to obtain the drug release profile required to achieve a desired treatment goal. Furthermore, the property of the buccal films depends on the type and concentration of the polymer used.

    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  12. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  13. Dorniani D, Kura AU, Hussein-Al-Ali SH, Bin Hussein MZ, Fakurazi S, Shaari AH, et al.
    ScientificWorldJournal, 2014;2014:416354.
    PMID: 24737969 DOI: 10.1155/2014/416354
    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  14. Lee SY, Kamarul T
    Int J Biol Macromol, 2014 Mar;64:115-22.
    PMID: 24325858 DOI: 10.1016/j.ijbiomac.2013.11.039
    In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50 kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50 kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  15. Chahal S, Chalal S, Fathima SJ, Yusoff MB
    Biomed Mater Eng, 2014;24(1):799-806.
    PMID: 24211966 DOI: 10.3233/BME-130871
    In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  16. Lee SY, Wee AS, Lim CK, Abbas AA, Selvaratnam L, Merican AM, et al.
    J Mater Sci Mater Med, 2013 Jun;24(6):1561-70.
    PMID: 23512151 DOI: 10.1007/s10856-013-4907-4
    This study aims to pre-assess the in vitro and in vivo biocompatibility of poly(vinyl alcohol)-carboxylmethyl-chitosan-poly(ethylene glycol) (PCP) scaffold. PCP was lyophilised to create supermacroporous structures. 3-(4, 5-dimethyl-thiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and immunohistochemistry (IHC) were used to evaluate the effectiveness of PCP scaffolds for chondrocytes attachment and proliferation. The ultrastructural was assessed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Extracellular matrix (ECM) formation was evaluated using collagen type-II staining, glycosaminoglycan (GAG) and collagen assays. Histological analysis was conducted on 3-week implanted Sprague-Dawley rats. The MTT, IHC, SEM and TEM analyses confirm that PCP scaffolds promoted cell attachment and proliferation in vitro. The chondrocyte-PCP constructs secreted GAG and collagen type-II, both increased significantly from day-14 to day-28 (P 
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  17. Ngadiman NH, Idris A, Irfan M, Kurniawan D, Yusof NM, Nasiri R
    J Mech Behav Biomed Mater, 2015 Sep;49:90-104.
    PMID: 26002419 DOI: 10.1016/j.jmbbm.2015.04.029
    Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  18. Ebadi M, Buskaran K, Saifullah B, Fakurazi S, Hussein MZ
    Int J Mol Sci, 2019 Aug 01;20(15).
    PMID: 31374834 DOI: 10.3390/ijms20153764
    One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg-Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  19. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  20. Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Omidi M, et al.
    Int J Biol Macromol, 2020 Apr 15;149:513-521.
    PMID: 31954780 DOI: 10.1016/j.ijbiomac.2020.01.139
    Skin and soft tissue infections are major concerns with respect to wound repair. Recently, anti-bacterial wound dressings have been emerging as promising candidates to reduce infection, thus accelerating the wound healing process. This paper presents our work to develop and characterize poly(vinyl alcohol) (PVA)/chitosan (CS)/silk sericin (SS)/tetracycline (TCN) porous nanofibers, with diameters varying from 305 to 425 nm, both in vitro and in vivo for potential applications as wound dressings. The fabricated nanofibers possess a considerable capacity to take up water through swelling (~325-650%). Sericin addition leads to increased hydrophilicity and elongation at break while decreasing fiber diameter and mechanical strength. Moreover, fibroblasts (L929) cultured on the nanofibers with low sericin content (PVA/CS/1-2SS) displayed greater proliferation compared to those on nanofibers without sericin (PVA/CS). Nanofibers loaded with high sericin and tetracycline content significantly inhibited the growth of Escherichia coli and Staphylococcus aureus. In vivo examination revealed that PVA/CS/2SS-TCN nanofibers enhance wound healing, re-epithelialization, and collagen deposition compared to traditional gauze and nanofibers without sericin. The results of this study demonstrate that the PVA/CS/2SS-TCN nanofiber creates a promising alternative to traditional wound dressing materials.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links