Displaying publications 21 - 40 of 69 in total

Abstract:
Sort:
  1. Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S184-202.
    PMID: 26106137 DOI: 10.1093/carcin/bgv036
    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
    Matched MeSH terms: Neovascularization, Pathologic/chemically induced*
  2. Ch'ng ES, Tuan Sharif SE, Jaafar H
    Virchows Arch, 2013 Mar;462(3):257-67.
    PMID: 23283409 DOI: 10.1007/s00428-012-1362-4
    Tumor-associated macrophages play a crucial role in breast cancer progression and tumor angiogenesis. However, evaluation of tumor-associated macrophages incorporating their histological locations is lacking. The aim of this study was to clarify whether macrophages in tumor stroma and macrophages in tumor cell nests have distinctive properties in relation to pertinent breast cancer clinicopathological parameters and tumor angiogenesis. In 94 human invasive breast ductal carcinomas, tumor-associated macrophages were immunostained with anti-CD68 antibody and counted or graded according to these histological locations. Microvessels were immunostained with anti-CD34 antibody and counted for microvessel density. We found that the presence of tumor stromal and tumor nest macrophages was closely correlated (p = 0.001). Both tumor stromal and tumor nest macrophages were associated with mitotic count (p = 0.001 and p = 0.037, respectively). However, only higher tumor stromal macrophage grades were associated with higher tumor grades (p = 0.004) and negative estrogen receptor status (p = 0.007). Multivariate analysis showed that tumors with a high mitotic count score (score 3 vs. scores 1 and 2) had a higher tumor stromal macrophage density (Grades III and IV) when adjusted for tumor size, tubule formation, and estrogen receptor status (odds ratio 3.41, p = 0.010). The tumor nest macrophage count significantly correlated with the microvessel density (p 
    Matched MeSH terms: Neovascularization, Pathologic/pathology*
  3. Wen Jun L, Pit Foong C, Abd Hamid R
    Biomed Pharmacother, 2019 Oct;118:109221.
    PMID: 31545225 DOI: 10.1016/j.biopha.2019.109221
    Ardisia crispa Thunb. A. DC. (Primulaceae) has been used extensively as folk-lore medicine in South East Asia including China and Japan to treat various inflammatory related diseases. Ardisia crispa root hexane fraction (ACRH) has been thoroughly studied by our group and it has been shown to exhibit anti-inflammatory, anti-hyperalgesic, anti-arthritic, anti-ulcer, chemoprevention and suppression against inflammation-induced angiogenesis in various animal model. Nevertheless, its effect against human endothelial cells in vitro has not been reported yet. Hence, the aim of the study is to investigate the potential antiangiogenic property of ACRH in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo model. ACRH was separated from the crude ethanolic extract of the plant's root in prior to experimental studies. MTT assay revealed that ACRH exerted a concentration-dependent antiproliferative effect on HUVEC with the IC50 of 2.49 ± 0.04 μg/mL. At higher concentration (10 μg/mL), apoptosis was induced without affecting the cell cycle distribution. Angiogenic properties including migration, invasion and differentiation of HUVECs, evaluated via wound healing, trans-well invasion and tube formation assay respectively, were significantly suppressed by ACRH in a concentration-dependent manner. Noteworthily, significant antiangiogenic effects were observed even at the lowest concentration used (0.1 μg/mL). Expression of proMMP-2, vascular endothelial growth factor (VEGF)-C, VEGF-D, Angiopoietin-2, fibroblast growth factor (FGF)-1, FGF-2, Follistatin, and hepatocyte growth factor (HGF) were significantly reduced in various degrees by ACRH. The ISV formation in zebrafish embryo was significantly suppressed by ACRH at the concentration of 5 μg/mL. These findings revealed the potential of ACRH as antiangiogenic agent by suppressing multiple proangiogenic proteins. Thus, it can be further verified via the transcription of these proteins from their respective DNA, in elucidating their exact pathways.
    Matched MeSH terms: Neovascularization, Pathologic/drug therapy*; Neovascularization, Pathologic/pathology
  4. Abdallah Q, Al-Deeb I, Bader A, Hamam F, Saleh K, Abdulmajid A
    Mol Med Rep, 2018 Aug;18(2):2441-2448.
    PMID: 29901194 DOI: 10.3892/mmr.2018.9155
    Angiogenesis plays a crucial role in malignant tumor progression and development. The present study aimed to identify lead plants with selective anti-angiogenic properties. A total of 26 methanolic extracts obtained from 18 plants growing in Saudi Arabia and Jordan that belong to the Lamiaceae family were screened for their cytotoxic and anti-angiogenic activities using MTT and rat aortic ring assays, respectively. Four novel extracts of Thymbra capitata (L.) Cav., Phlomis viscosa Poir, Salvia samuelssonii Rech.f., and Premna resinosa (Hochst.) Schauer were identified for their selective anti-angiogenic effects. These extracts did not exhibit cytotoxic effects on human endothelial cells (EA.hy926) indicating the involvement of indirect anti-angiogenic mechanisms. The active extracts are potential candidates for further phytochemical and mechanistic studies.
    Matched MeSH terms: Neovascularization, Pathologic/drug therapy*; Neovascularization, Pathologic/epidemiology
  5. Mohd Nafi SN, Idris F, Jaafar H
    Asian Pac J Cancer Prev, 2017 Dec 28;18(12):3231-3238.
    PMID: 29281877
    Background: Angiogenic activity has been considered to reflect important molecular events during breast tumour
    development. The present study concerned cellular and molecular changes of MNU-induced breast tumours subjected
    to promotion and suppression of angiogenesis. Methods: Female Sprague Dawley rats at the age of 21 days received
    MNU at the dose 70 mg/kg of body weight by intraperitoneal injection. Three months post-carcinogen initiation,
    mammary tumours were palpated and their growth was monitored. When the tumour diameter reached 1.0 ± 0.05 cm,
    rats were given bFGF or PF4 intratumourally at a dose of 10 μg/tumour. Entire palpable tumour were subsequently
    excised and subjected to histology examination, IHC staining, and RT-PCR. Results: No critical morphological changes
    were observed between pro-angiogenic factor, bFGF, and control groups. However, increase of tumour size with more
    necrotic and diffuse areas was notable in tumours after anti-angiogenic PF4 intervention. ER and PR mRNA expression
    was significantly up- and down-regulated in bFGF and PF4 groups, respectively. The trends were significantly associated
    with peri- and intratumoural MVD counts. However, irrespective of whether we promoted or inhibited angiogenesis,
    the expression of EGFR and ERBB2 continued to be significantly increased but this was not significantly associated
    with the MVD score. No significant differences in E-cadherin and LR gene expression were noted between intervention
    and control groups. Conclusion: ER and PR receptor expression shows consistent responses when tumour angiogenesis
    is manipulated either positively or negatively. Our study adds to current understanding that not only do we need to
    target hormonal receptors, as presently practiced, but we also need to target endothelial receptors to successfully treat
    breast cancer.
    Matched MeSH terms: Neovascularization, Pathologic/pathology; Neovascularization, Pathologic/prevention & control*
  6. Wong MS, Sidik SM, Mahmud R, Stanslas J
    Clin Exp Pharmacol Physiol, 2013 May;40(5):307-19.
    PMID: 23534409 DOI: 10.1111/1440-1681.12083
    Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
    Matched MeSH terms: Neovascularization, Pathologic/drug therapy; Neovascularization, Pathologic/metabolism; Neovascularization, Pathologic/prevention & control
  7. Um Min Allah N, Berahim Z, Ahmad A, Kannan TP
    Tissue Eng Regen Med, 2017 Oct;14(5):495-505.
    PMID: 30603504 DOI: 10.1007/s13770-017-0065-y
    Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
    Matched MeSH terms: Neovascularization, Pathologic
  8. Oon CE, Bridges E, Sheldon H, Sainson RCA, Jubb A, Turley H, et al.
    Oncotarget, 2017 Jun 20;8(25):40115-40131.
    PMID: 28445154 DOI: 10.18632/oncotarget.16969
    Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics.
    Matched MeSH terms: Neovascularization, Pathologic/genetics; Neovascularization, Pathologic/metabolism*; Neovascularization, Pathologic/prevention & control
  9. Mushawiahti, M., Rokiah, O., Umi, K.M.N., Leow, S.N.
    Medicine & Health, 2014;9(2):134-138.
    MyJurnal
    Retinopathy of prematurity (ROP) is a disorder describing an immature vascularisation
    of a developing retina in low birth weight preterm infants. This condition potentially
    leads to blindness. ROP developed as a response of hypoxia of the eye due to
    incomplete development of the retinal vessels. ROP is commonly reported as
    bilateral disease,a small percentage of infants have asymmetrical changes. We
    report a case of long-term outcome of a asymmetry ROP changes with peripheral
    retinal ablation in a single eye. This particular case demonstrates the possible longterm
    outcome of unilaterally treated ROP which could either be due to the severity
    of the disease itself or the treatment she received. It is important to highlight the
    possibility of unequal development of the eye in asymmetrical presentation of ROP.
    Matched MeSH terms: Neovascularization, Pathologic
  10. Tan TL, Illa NE, Ting SY, Hwong PL, Azmel A, Shunmugarajoo A, et al.
    Med J Malaysia, 2023 Mar;78(2):155-162.
    PMID: 36988524
    INTRODUCTION: The co-existence of coronavirus disease 2019 (COVID-19) and pulmonary thromboembolic (PTE) disease poses a great clinical challenge. To date, few researches have addressed this important clinical issue among the South-East Asian populations. The objectives of this study were as follow: (1) to describe the clinical characteristics and computed tomographical (CT) features of patients with PTE disease associated with COVID-19 infection and (2) to compare these parameters with those COVID-19 patients without PTE disease.

    MATERIALS AND METHODS: This cross-sectional study with retrospective record review was conducted in Hospital Tengku Ampuan Rahimah, Selangor, Malaysia. We included all hospitalised patients with confirmed COVID-19 infection who had undergone CT pulmonary angiogram (CTPA) examinations for suspected PTE disease between April 2021 and May 2021. Clinical data and laboratory data were extracted by trained data collectors, whilst CT images retrieved were analysed by a senior radiologist. Data analysis was performed using Statistical Package for the Social Sciences (SPSS) version 20.

    RESULTS: We studied 184 COVID-19 patients who were suspected to have PTE disease. CTPA examinations revealed a total of 150 patients (81.5%) suffered from concomitant PTE disease. Among the PTE cohort, the commonest comorbidities were diabetes mellitus (n=78, 52.0%), hypertension (n=66, 44.0%) and dyslipidaemia (n=25, 16.7%). They were generally more ill than the non-PTE cohort as they reported a significantly higher COVID-19 disease category during CTPA examination with p=0.042. Expectedly, their length of both intensive care unit stays (median number of days 8 vs. 3; p=0.021) and hospital stays (median number of days 14.5 vs. 12; p=0.006) were significantly longer. Intriguingly, almost all the subjects had received either therapeutic anticoagulation or thromboprophylactic therapy prior to CTPA examination (n=173, 94.0%). Besides, laboratory data analysis identified a significantly higher peak C-reactive protein (median 124.1 vs. 82.1; p=0.027) and ferritin levels (median 1469 vs. 1229; p=0.024) among them. Evaluation of CT features showed that COVID-19 pneumonia pattern (p<0.001) and pulmonary angiopathy (p<0.001) were significantly more profound among the PTE cohort. To note, the most proximal pulmonary thrombosis was located in the segmental (n=3, 2.0%) and subsegmental pulmonary arteries (n=147, 98.0%). Also, the thrombosis predominantly occurred in bilateral lungs with multilobar involvement (n=95, 63.3%).

    CONCLUSION: Overall, PTE disease remains prevalent among COVID-19 patients despite timely administration of thromboprophylactic therapy. The presence of hyperinflammatory activities, unique thrombotic locations as well as concurrent pulmonary parenchyma and vasculature aberrations in our PTE cohort implicate immunothrombosis as the principal mechanism of this novel phenomenon. We strongly recommend future researchers to elucidate this important clinical disease among our post- COVID vaccination populations.

    Matched MeSH terms: Neovascularization, Pathologic
  11. Ng CT, Yip WK, Mohtarrudin N, Seow HF
    Malays J Pathol, 2015 Dec;37(3):219-25.
    PMID: 26712666 MyJurnal
    Immortalized human endothelial cells are widely used as in vitro models for debilitating conditions such as cancer, cardiovascular and ocular diseases. Human microvascular endothelial cell (HMEC-1) is immortalized via stable transfection with a gene encoding SV40 large antigen whilst telomerase-immortalized human microvascular endothelial (TIME) cells is immortalized by engineering the human telomerase catalytic protein (hTERT) into primary microvascular endothelial cells. Here, we established a three-dimensional (3D) spheroid invasion assay with HMEC-1 and TIME and compared the difference in their ability to invade through the collagen matrix in response to exogenous growth factors, namely vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF).
    Matched MeSH terms: Neovascularization, Pathologic/pathology*
  12. Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, et al.
    Sci Rep, 2019 Feb 06;9(1):1514.
    PMID: 30728391 DOI: 10.1038/s41598-018-37796-w
    Eupatorin has been reported with in vitro cytotoxic effect on several human cancer cells. However, reports on the mode of action and detail mechanism of eupatorin in vitro in breast cancer disease are limited. Hence, eupatorin's effect on the human breast carcinoma cell line MCF-7 and MDA-MB-231 was investigated. MTT assay showed that eupatorin had cytotoxic effects on MCF-7 and MDA-MB-231 cells but was non-toxic to the normal cells of MCF-10a in a time-dose dependent manner. At 24 h, the eupatorin showed mild cytotoxicity on both MCF-7 and MDA-MB-231 cells with IC50 values higher than 20 μg/mL. After 48 h, eupatorin at 5 μg/mL inhibited the proliferation of MCF-7 and MDA-MB-231 cells by 50% while the IC50 of MCF-10a was significantly (p 
    Matched MeSH terms: Neovascularization, Pathologic/prevention & control*
  13. Wang S, Yang J, Kuang X, Li H, Du H, Wu Y, et al.
    J Ethnopharmacol, 2024 May 23;326:117913.
    PMID: 38360380 DOI: 10.1016/j.jep.2024.117913
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated.

    AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis.

    MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model.

    RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor.

    CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.

    Matched MeSH terms: Neovascularization, Pathologic/metabolism
  14. Aisha AF, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AM
    PMID: 23842450 DOI: 10.1186/1472-6882-13-168
    Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract.
    Matched MeSH terms: Neovascularization, Pathologic/drug therapy*; Neovascularization, Pathologic/genetics; Neovascularization, Pathologic/metabolism; Neovascularization, Pathologic/physiopathology
  15. Hamsin DE, Hamid RA, Yazan LS, Taib CN, Yeong LT
    PMID: 24641961 DOI: 10.1186/1472-6882-14-102
    In our previous studies conducted on Ardisia crispa roots, it was shown that Ardisia crispa root inhibited inflammation-induced angiogenesis in vivo. The present study was conducted to identify whether the anti-angiogenic properties of Ardisia crispa roots was partly due to either cyclooxygenase (COX) or/and lipoxygenase (LOX) activity inhibition in separate in vitro studies.
    Matched MeSH terms: Neovascularization, Pathologic/metabolism; Neovascularization, Pathologic/prevention & control*
  16. Muslim NS, Nassar ZD, Aisha AF, Shafaei A, Idris N, Majid AM, et al.
    PMID: 23126282 DOI: 10.1186/1472-6882-12-210
    Angiogenesis plays a critical role in embryonic development and various physiological processes. However, excessive angiogenesis is associated with several pathological conditions including cancer. Pithecellobium jiringa (Jack) Prain is a traditional medicinal plant from the family Leguminosae. It is native to the Southeast Asia, where it has been used traditionally for treatment of various ailments such as hypertension and diabetes. The present work is aimed to study antioxidant and antiangiogenesis activities of P. jiringa ethanol extracts.
    Matched MeSH terms: Neovascularization, Pathologic/drug therapy; Neovascularization, Pathologic/metabolism
  17. Liew SC, Das-Gupta E, Chakravarthi S, Wong SF, Lee N, Safdar N, et al.
    BMC Res Notes, 2012;5:201.
    PMID: 22537619 DOI: 10.1186/1756-0500-5-201
    Angiogenesis has been reported to be one of the contributory factors to the pathogenesis of psoriasis vulgaris. This study aims to compare the expression of different angiogenesis growth factors namely (1) the vascular endothelial growth factor (VEGF) subfamily: A, B, C, D and placenta growth factor (PlGF); (2) nerve growth factor (NGF) and (3) von Willebrand factor (vWFr) in the skins of patients with psoriasis vulgaris and non-psoriatic volunteers.

    Study site: Dermatology Department of Hospital Kuala Lumpur, Kuala Lumpur and Tuanku Ja’afar Hospital, Seremban, Malaysia
    Matched MeSH terms: Neovascularization, Pathologic/metabolism; Neovascularization, Pathologic/pathology
  18. van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, et al.
    Arthritis Rheumatol, 2021 12;73(12):2327-2337.
    PMID: 34105308 DOI: 10.1002/art.41887
    OBJECTIVE: Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage-associated protein YKL-40 (chitinase 3-like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL-40 to vasculopathy in GCA.

    METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs).

    RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation.

    CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.

    Matched MeSH terms: Neovascularization, Pathologic/metabolism; Neovascularization, Pathologic/pathology*
  19. Namvar F, Mohamad R, Baharara J, Zafar-Balanejad S, Fargahi F, Rahman HS
    Biomed Res Int, 2013;2013:604787.
    PMID: 24078922 DOI: 10.1155/2013/604787
    In the present study, we evaluated the effect of brown seaweeds Sargassum muticum methanolic extract (SMME), against MCF-7 and MDA-MB-231 breast cancer cell lines proliferation. This algae extract was also evaluated for reducing activity and total polyphenol content. The MTT assay results indicated that the extracts were cytotoxic against breast cancer cell lines in a dose-dependent manner, with IC50 of 22 μg/ml for MCF-7 and 55 μg/ml for MDA-MB-231 cell lines. The percentages of apoptotic MCF-7-treated cells increased from 13% to 67% by increasing the concentration of the SMME. The antiproliferative efficacy of this algal extract was positively correlated with the total polyphenol contents, suggesting a causal link related to extract content of phenolic acids. Cell cycle analysis showed a significant increase in the accumulation of SMME-treated cells at sub-G1 phase, indicating the induction of apoptosis by SMME. Further apoptosis induction was confirmed by Hoechst 33342 and AO/PI staining. Also SMME implanted in vivo into fertilized chicken eggs induced dose-related antiangiogenic activity in the chorioallantoic membrane (CAM). Our results imply a new insight on the novel function of Sargassum muticum polyphenol-rich seaweed in cancer research by induction of apoptosis, antioxidant, and antiangiogenesis effects.
    Matched MeSH terms: Neovascularization, Pathologic/drug therapy; Neovascularization, Pathologic/pathology
  20. Tang YQ, Jaganath IB, Manikam R, Sekaran SD
    Int J Med Sci, 2014;11(6):564-77.
    PMID: 24782645 DOI: 10.7150/ijms.7704
    Melanoma is the most fatal form of skin cancer. Different signalling pathways and proteins will be differentially expressed to pace with the tumour growth. Thus, these signalling molecules and proteins are become potential targets to halt the progression of cancer. The present works were attempted to investigate the underlying molecular mechanisms of anticancer effects of Phyllanthus (P.amarus, P.niruri, P.urinaria and P.watsonii) on skin melanoma, MeWo cells.
    Matched MeSH terms: Neovascularization, Pathologic/drug therapy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links