METHODS: We describe the clinical presentation, diagnostic work-up, management, and clinical course of a patient admitted with SMA syndrome who was subsequently found to have a hypothalamic germinoma.
RESULTS: An adolescent boy was admitted to the surgical ward with progressive weight loss over a 2 year period and postprandial vomiting. He was diagnosed with SMA syndrome based on evidence of proximal duodenal dilatation, extrinsic compression of the distal duodenum, and a narrowed aortomesenteric angle (16°). Investigations performed to exclude thyrotoxicosis unexpectedly revealed secondary hypothyroidism and further evaluation demonstrated evidence of pan-hypopituitarism. Psychiatric evaluation excluded anorexia nervosa and bulimia. Magnetic resonance imaging (MRI) of the brain revealed a heterogeneously enhancing hypothalamic lesion, but a normal pituitary gland. Hormone replacement with hydrocortisone, desmopressin, testosterone, and thyroxine resulted in weight gain and resolution of gastrointestinal symptoms. A transventricular endoscopic biopsy subsequently confirmed a hypothalamic germinoma and he was referred to an oncologist.
CONCLUSION: SMA syndrome secondary to severe weight loss is an uncommon cause of upper gastrointestinal obstruction. While there have been reports of poorly controlled diabetes mellitus and thyrotoxicosis manifesting as SMA syndrome, there are no published reports to date of SMA syndrome secondary to hypothalamic/pituitary disease. Management of SMA syndrome is conservative, as symptoms of intestinal obstruction resolve with weight gain following treatment of the underlying cause. Awareness of this uncommon presentation of endocrine cachexia/hypothalamic disease will prevent unnecessary laparotomies and a misdiagnosis of an eating disorder.
BACKGROUND: Mononuclear cells contain progenitor cells including haematopoietic and mesenchymal stem cells, endothelial progenitor cells and fibroblasts which facilitate wound healing through cytokines, growth factor secretions, cell-cell interactions and provision of extracellular matrix scaffolding. Clinical applications of autologous mononuclear cells therapy in wound healing in non-malignant patients with critical limb ischaemia have been reported with remarkable outcome.
METHODS: We report three patients with haematological malignancies undergoing chemotherapy, who received autologous mononuclear cells implantation to treat non-healing wound after optimum conventional wound care. The sources of mononuclear cells (MNC) were from bone marrow (BM), peripheral blood (PB) and mobilised PB cells (mPB-MNC) using granulocyte colony stimulating factor (G-CSF). The cells were directly implanted into wound and below epidermis. Wound sizes and adverse effects from implantation were assessed at regular intervals.
RESULTS: All patients achieved wound healing within three months following autologous mononuclear cells implantation. No implantation adverse effects were observed.
CONCLUSIONS: Autologous mononuclear cells therapy is a feasible alternative to conventional wound care to promote complete healing in non-healing wounds compounded by morbid factors such as haematological malignancies, chemotherapy, diabetes mellitus (DM), infections and prolonged immobility.