METHODS: Male Sprague Dawley rats were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham surgery. Then, PBOCCA rats received ip injections with, either vehicle (control group), the muscarinic receptor agonist oxotremorine (0.1 mg/kg), or the acetylcholinesterase inhibitor physostigmine (0.1 mg/kg). Cognitive functions were evaluated using a passive avoidance task and the Morris water maze test. In addition, hippocampal LTP was recorded in vivo under anaesthesia.
RESULTS: The PBOCCA rats exhibited significant deficits in passive avoidance retention and spatial learning and memory tests. They also showed a suppression of LTP formation in the hippocampus. Oxotremorine and physostigmine significantly improved the learning and memory deficits as well as the suppression of LTP in PBOCCA rats.
CONCLUSIONS: The present data suggest that the cholinergic system plays an important role in CCH-induced cognitive deficits and could be an effective therapeutic target for the treatment of VaD.
MATERIALS AND METHODS: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.
KEY FINDINGS: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.
SIGNIFICANCE: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.