Displaying publications 21 - 35 of 35 in total

Abstract:
Sort:
  1. Collaris R, Sidhu K, Chan JM
    Menopause, 2010 Mar;17(2):351-8.
    PMID: 19890223 DOI: 10.1097/gme.0b013e3181bcd6f8
    Surgical menopause, in comparison with natural menopause, has traditionally been claimed to lead to faster onset of more severe menopausal symptoms. There is little prospective research to support this view. We aimed to evaluate the speed of onset and magnitude of climacteric symptoms after oophorectomy and whether they relate to serum hormone changes. This would aide in counseling women before surgery.
    Matched MeSH terms: Luteinizing Hormone/blood*
  2. Maneesh M, Dutta S, Chakrabarti A, Vasudevan DM
    Indian J. Physiol. Pharmacol., 2006 Jul-Sep;50(3):291-6.
    PMID: 17193902
    Ethanol is a testicular toxin and it causes fertility abnormalities with low sperm count and impaired sperm motility in men. The present study was designed to investigate plasma testosterone level and hypothalamic pituitary gonadal (HPG) axis function in alcoholic men and also effect of ethanol on systemic oxidative stress. Forty six male alcohol abusers in the age group 20-40 years were selected. Fifty five, males in the same age group served as control. Alcohol abusers had significantly low plasma testosterone with low luteinizing hormone and follicle stimulating hormone. In addition they had significantly high thiobarbituric acid reactive substances (TBARS), superoxide dismutase and glutathione S-transferase, and low glutathione, ascorbic acid, catalase, glutathione reductase and glutathione peroxidase. Moreover, serum testosterone level in alcoholics negatively correlated with duration of alcohol abuse, and TBARS. Duration dependent decreased serum testosterone level in alcohol abusers might be due to 1) increased oxidative stress which can damage Leydig and supporting Sertoli cells and 2) impaired HPG axis.
    Matched MeSH terms: Luteinizing Hormone/blood
  3. Jesse FF, Ibrahim HH, Abba Y, Chung EL, Marza AD, Mazlan M, et al.
    BMC Vet Res, 2017 Apr 05;13(1):88.
    PMID: 28381248 DOI: 10.1186/s12917-017-1010-y
    BACKGROUND: Hemorrhagic septicemia is a fatal disease of cattle and buffaloes caused by P. multocida. Although the pathogenesis of the bacteria has been well established in literature, there is a paucity of information on the possible role of the bacteria and its immunogens; lipopolysaccharide (LPS) and outer membrane proteins (OMPs) on the reproductive capacity of buffalo heifers.

    METHODS: In this study, twenty one healthy prepubertal female buffaloes aged 8 months were divided into seven groups of 3 buffaloes each (G1-G7). Group 1 (G1) served as the negative control group and were inoculated orally with 10 mL sterile Phosphate Buffer Saline (PBS), groups 2 (G2) and 3 (G3) were inoculated orally and subcutaneously with 10 mL of 10(12) colony forming unit (cfu) of P.multocida type B: 2, while groups 4 (G4) and 5 (G5) received 10 mL of bacterial LPS orally and intravenously, respectively. Lastly, groups 6 (G6) and 7 (G7) were orally and subcutaneously inoculated with 10 mL of bacterial OMPs. Whole blood was collected in EDTA vials at stipulated time points (0, 2, 4, 6, 8, 10, 12, 24, 36, 48, 72, 120, 168, 216, 264, 312, 360, 408, 456 and 504 h), while tissue sections of the pituitary glands were collected and transported to the histopathology laboratory in 10% buffered formalin for processing and Hematoxylin and eosin staining. Plasma levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), progesterone (PG), estradiol (EST) and gonadotrophin releasing hormone (GnRH) were determined.

    RESULTS: The histopathological lesions observed in the pituitary gland included hemorrhage, congestion, inflammatory cell infiltration, hydropic degeneration, necrosis and edema. These changes were higher (p 

    Matched MeSH terms: Luteinizing Hormone/blood
  4. Jamaludin J, Nordin NM, Mohamad N, Etta KM
    Malays J Reprod Health, 1988 Jun;6(1):65-9.
    PMID: 12281593
    Subcutaneous body fat and Quetelet's Indices (QI) of 52, 18-29 year old normal female volunteers were determined. These body mass indices were then grouped according to the phase of each subject's menstrual cycle, early or late follicular and early or late luteal phase. The subcutaneous body fat is 27.07 +or- 1.0% in the early follicular but drops to 24.68 +or- 1.84% in the late follicular phase. The value then rises significantly higher than that in the late follicular phase to 30.14 +or- 1.15% (P0.02) in the early luteal drops to 27.17 +or- 0.55% towards the level of the early follicular phase (P0.05). Variations in the values of QI during each menstrual cycle exactly mirror those for subcutaneous body fat. The fall in the 2 body mass indices during the late follicular phase coincides somewhat with the established preovulatory LH and FSH surges as well as the high levels of estrogen of this period. On the other hand the significant rise in the 2 parameters during the early luteal phase coincides with the marked rise in the ratio of progesterone to estrogen. Clearly, increased levels of progesterone relative to estrogen appear to cause an increase in the body fat during each menstrual cycle. The implication of this finding for women on contraceptive pills which are predominantly progesterone and those whose normal menstrual cycle is "interrupted" at the early luteal phase by a successful fertilization raises very interesting questions with regards to prediction of ovulation.
    Matched MeSH terms: Luteinizing Hormone*
  5. Ruslee SS, Zaid SSM, Bakrin IH, Goh YM, Mustapha NM
    BMC Complement Med Ther, 2020 May 29;20(1):160.
    PMID: 32471398 DOI: 10.1186/s12906-020-02960-1
    BACKGROUND: To investigate the protective effects of Tualang honey against the toxicity effects induced by cadmium (Cd) on the ovary.

    METHODS: A total of 32 female Sprague Dawley rats were taken and randomly divided into four groups (n = 8). Throughout the experimental period of 6 weeks, negative control-NC (vehicle deionized water), positive control-CD (Cd at 5 mg/kg), Tualang honey followed by Cd exposure-TH (Tualang honey at 200 mg/kg and Cd at 5 mg/kg) and Tualang honey control-THC (Tualang honey at 200 mg/kg) groups, were administered orally on a daily basis.

    RESULTS: Rats exposed to Cd were significantly higher in ovarian weight, number of antral and atretic follicles as compared to the NC group. The disruptive effects of Cd on ovarian follicles were associated with a disruption in gonadotropin hormones and decreases in follicular stimulating hormone (FSH) and luteinizing hormone (LH). Moreover, a significant formation of oxidative stress in ovarian Cd-exposed rats has been proven by increasing the level of lipid peroxidation products (malondialdehyde) and decreasing the levels of enzymatic antioxidant (catalase). Interestingly, a daily supplementation of high antioxidant agents such as Tualang honey in these animals, caused significant improvements in the histological changes. Additionally, less atretic follicles were observed, restoring the normal level of LH and FSH (P 

    Matched MeSH terms: Luteinizing Hormone/metabolism
  6. Mizrahi N, Gilon C, Atre I, Ogawa S, Parhar IS, Levavi-Sivan B
    PMID: 31354632 DOI: 10.3389/fendo.2019.00469
    Neurokinin B (NKB) and its cognate receptor (NK3R) are emerging as important components of the neuroendocrine regulation of reproduction. Unlike mammalian tac3, which encodes only one mature peptide (namely NKB), two mature peptides are predicted for each tac3 gene in fish and frogs. Therefore, it was designated as Neurokinin F (NKF). Hormone analogs with high and long-lasting biological activity are important tools for physiological and biological research; however, the availability of piscine-specific analogs is very limited. Therefore, we have developed specific NKB and NKF analogs based on the structure of the mammalian NKB analog-senktide. These analogs, specifically designed for longer half-lives by methylation of proteolysis sites, exhibited activity equal to those of the native NKB and NKF in short-term signal-transduction assays of tilapia NKB receptors. However, the analogs were found to be able to significantly increase the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and growth hormone (GH) in tilapia, as fast as 1 h after intraperitoneal (IP) injection. The impact of the analogs on LH and FSH secretion lasted longer compared to the effect of native peptides and salmon GnRH analog (sGnRHa). In addition, we harvested pituitaries 24 h post injection and measured LH, FSH and GH mRNA synthesis. Both analogs elevated mRNA levels of LH and GH, but only NKB analog increased FSH mRNA levels in the pituitary and all GnRH forms in the brain. NKB receptors were co-localized with all three types the GnRH neurons in tilapia brain in situ. We previously showed a direct effect of NKB at the pituitary level, and these new results suggest that the stronger impact of the NKB analog on GTH release is also due to an indirect effect through the activation of GnRH neurons. These results suggest that novel synthetic NKB analogs may serve as a tool for both research and agricultural purposes. Finally, the biological activity and regulatory role of NKB in tilapia brain and pituitary suggest that the NKB/NKBR system in fish is an important reproductive regulator in a similar way to the kisspeptin system in mammals.
    Matched MeSH terms: Luteinizing Hormone
  7. Chinnappan SM, George A, Evans M, Anthony J
    Food Nutr Res, 2020;64.
    PMID: 33061884 DOI: 10.29219/fnr.v64.3665
    Background: Interest in herbal medicines and non-hormonal therapies for the treatment of menopausal symptoms has increased since the publication of adverse effects of estrogen replacement therapy. Vasomotor symptoms are the most characteristic and notable symptoms of menopause.

    Objective: To investigate the changes in the frequency and severity of hot flush and associated vasomotor symptoms experienced by peri-menopausal and menopausal women supplemented with the herbal formulation (Nu-femme™) comprising Labisia pumila (SLP+®) and Eurycoma longifolia (Physta®) or placebo.

    Design: Randomised, double-blind, placebo-controlled, 24-week study enrolled 119 healthy women aged 41-55 years experiencing peri-menopausal or menopausal symptoms and supplemented with Nu-femme™ or placebo. The primary endpoint was comparative changes between treatment groups in the change in the frequency and severity of hot flushes. The secondary objectives were to assess the changes in the frequency and severity of joint pain, Menopause Rating Scale (MRS) and Menopause-Specific Quality of Life (MENQOL) questionnaire domain scores. Concentrations of serum hormone, lipid profile, bone markers, sleep quality and vitality were also studied as secondary objectives.

    Results: At week 12, significant (P < 0.01) improvements in hot flush symptoms were observed in Nu-femme™ and placebo groups. Even though there was no significant difference between groups, higher percentage of improvement, 65%, was seen in Nu-femme™ compared to 60% in placebo. Significant improvements (P < 0.001) in MRS and MENQOL scores at weeks 12 and 24 were observed in both groups, respectively. Luteinising hormone and follicle-stimulating hormone levels were significantly reduced (P < 0.05) at weeks 12 and 24, respectively, compared to baseline in the Nu-femme™ group, with no significant changes observed in the placebo group. There were significant (P < 0.05) reductions in serum low-density lipid and triglycerides levels at week 12 in Nu-femme™ group, but no changes seen in placebo group. At the end of week 24, changes in haematology and clinical chemistry parameters remained within normal clinical ranges in both groups.

    Conclusion: Herbal formulation consists of L. pumila and E. longifolia (Nu-femme™) may support reduction in hot flushes and improvements in hormone and lipid profile in healthy peri-menopausal and menopausal women.

    Matched MeSH terms: Luteinizing Hormone
  8. Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF
    Front Pharmacol, 2021;12:631402.
    PMID: 33986667 DOI: 10.3389/fphar.2021.631402
    Edible bird's nest (EBN) is reported to have a positive in vitro proliferative effect and contain male reproductive hormones. Spermatogonia cells proliferate during spermatogenesis under male reproductive hormones stimulation that include testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Characterization of EBN through liquid chromatography-mass spectrometry (LCMS) has found testosterone as a base peak. Six types of amino acids, estradiol and sialic acid were among the major peaks that have been characterized. Based on the presence of these reproductive components, this study evaluated different doses of EBN on sperm parameters and male reproductive hormones of Sprague Dawley rats. Sixteen Sprague Dawley rats at the age of eight weeks were randomly and equally divided into four groups, which are Control, 10 mg/kg BW/d 50 mg/kg BW/d, and 250 mg/kg BW/d EBN group. The rats were fed with EBN enriched pellet daily and water ad-libitum. Rats were sacrificed and the organ was weighed for organ coefficients after eight weeks of treatment. Sperm concentration, percentage of sperm motility, and sperm viability were evaluated. Meanwhile, ELISA method was used to measure testosterone, FSH, and LH. Findings showed that there were no significant differences in organ coefficient between groups. Supplementation of 250 mg/kg BW/d EBN demonstrated a significant increase in sperm concentration, percentage of sperm motility as well as FSH and LH level compared to 10 mg/kg BW/d group. There was a dose-dependent increase in testosterone level but was not significant between groups. Based on these findings, EBN is concluded to have crucial effects on male reproductive parameters.
    Matched MeSH terms: Luteinizing Hormone
  9. Williams M, Valayannopoulos V, Altassan R, Chung WK, Heijboer AC, Keng WT, et al.
    J Inherit Metab Dis, 2018 May 02.
    PMID: 29721915 DOI: 10.1007/s10545-018-0184-1
    BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation.

    METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients.

    RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.

    Matched MeSH terms: Luteinizing Hormone
  10. Kyaw MT, Sakthiswary R, Ani Amelia Z, Rahana AR, Munirah MM
    Cureus, 2020 Apr 11;12(4):e7632.
    PMID: 32399364 DOI: 10.7759/cureus.7632
    BACKGROUND: Methotrexate (MTX), which is the anchor drug in rheumatoid arthritis (RA), targets actively proliferating cells including the oocytes and granulosa cells which may impair the ovarian reserve. The purpose of this study was to determine the effects of MTX therapy on gonadotropic hormones, i.e. follicular stimulating hormone (FSH) and luteinizing hormone (LH) in female RA patients of reproductive age.

    MATERIALS AND METHODS: This is a cross-sectional study conducted at the Universiti Kebangsaan Malaysia Medical Centre (UKMMC), from January 2018 to July 2018. Women with RA aged between 15 and 49 years who were on MTX therapy for at least six months, were consecutively recruited. All subjects were interviewed to gather information on their menstrual history and menopausal symptoms. The medical records were reviewed to obtain further data on the disease characteristics and RA treatment. The RA disease activity was determined using the DAS 28 scoring system. All subjects were tested for their serum FSH and LH levels.

    RESULTS: A total of 40 patients were included in this study. The median dose of MTX used by the subjects was 12.5 mg weekly. The mean cumulative MTX dose was 1664.92 ± 738.61 mg. More than half (53.1%) of the subjects reported menopausal symptoms especially hot flushes. We found that FSH levels had a significant positive correlation with cumulative MTX dose [(r = 0.86), p < 0.001] and the duration of MTX therapy [(r = 0.84), p < 0.001]. Besides, there was a significant relationship between disease activity based on DAS 28 and FSH levels (p < 0.01). Age, body mass index, disease duration, and weekly MTX dose showed no associations with the FSH levels. On multivariate analysis, DAS 28 was found to be the only parameter that remained significant [β = 1.74 (95% CI 1.17-2.31), p < 0.001]. The LH levels, on the other hand, were not associated with MTX therapy or disease activity.

    CONCLUSION: Higher levels of FSH, which is an indicator of diminished ovarian reserve, have a significant positive relationship with disease activity, cumulative dose, and duration of MTX therapy in RA.

    Matched MeSH terms: Luteinizing Hormone
  11. Ratnasingam J, Karim N, Paramasivam SS, Ibrahim L, Lim LL, Tan AT, et al.
    Pituitary, 2015 Aug;18(4):448-55.
    PMID: 25134488 DOI: 10.1007/s11102-014-0593-6
    PURPOSE: Radiation fields for nasopharyngeal cancer (NPC) include the base of skull, which places the hypothalamus and pituitary at risk of damage. We aimed to establish the prevalence, pattern and severity of hypothalamic pituitary (HP) dysfunction amongst NPC survivors.

    METHODS: We studied 50 patients (31 males) with mean age 57 ± 12.2 years who had treatment for NPC between 3 and 21 years (median 8 years) without pre-existing HP disorder from other causes. All patients had a baseline cortisol, fT4, TSH, LH, FSH, oestradiol/testosterone, prolactin and renal function. All patients underwent dynamic testing with insulin tolerance test to assess the somatotroph and corticotroph axes. Baseline blood measurements were used to assess thyrotroph, gonadotroph and lactotroph function.

    RESULTS: Hypopituitarism was present in 82% of patients, 30% single axis, 28% two axes, 18% three axes and 6% four axes deficiencies. Somatotroph deficiency was most common (78%) while corticotroph, gonadotroph and thyrotroph deficiencies were noted in 40% (4 complete/16 partial), 22 and 4% of the patients respectively. Hyperprolactinaemia was present in 30% of patients. The development of HP dysfunction was significantly associated with the time elapsed from irradiation, OR 2.5 (1.2, 5.3), p = 0.02, for every 2 years post treatment. The use of concurrent chemo-irradiation (CCRT) compared to those who had radiotherapy alone was also significantly associated with HP dysfunction, OR 14.5 (2.4, 87.7), p < 0.01.

    CONCLUSION: Despite low awareness and detection rates, HP dysfunction post-NPC irradiation is common. Use of CCRT may augment time related pituitary damage. As these endocrinopathies result in significant morbidity and mortality we recommend periodic assessment of pituitary function amongst NPC survivors.

    Matched MeSH terms: Luteinizing Hormone/blood
  12. Nna VU, Bakar ABA, Ahmad A, Mohamed M
    Andrology, 2019 01;7(1):110-123.
    PMID: 30515996 DOI: 10.1111/andr.12567
    BACKGROUND: Metformin has long been used for glycemic control in diabetic state. Recently, other benefits of metformin beyond blood glucose regulation have emerged.

    OBJECTIVES: To investigate the effect of metformin on the expression of testicular steroidogenesis-related genes, spermatogenesis, and fertility of male diabetic rats.

    MATERIALS AND METHODS: Eighteen adult male Sprague Dawley rats were divided into three groups, namely normal control (NC), diabetic control (DC), and metformin-treated (300 mg/kg body weight/day) diabetic rats (D+Met). Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.), followed by oral treatment with metformin for four weeks.

    RESULTS: Diabetes decreased serum and intratesticular testosterone levels and increased serum but not intratesticular levels of luteinizing hormone. Sperm count, motility, viability, and normal morphology were decreased, while sperm nuclear DNA fragmentation was increased in DC group, relative to NC group. Testicular mRNA levels of androgen receptor, luteinizing hormone receptor, cytochrome P450 enzyme (CYP11A1), steroidogenic acute regulatory (StAR) protein, 3β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD, as well as the level of StAR protein and activities of CYP11A1, 3β-HSD, and 17β-HSD, were decreased in DC group. Similarly, decreased activities of epididymal antioxidant enzymes and increased lipid peroxidation were observed in DC group. Consequently, decreased litter size, fetal weight, mating and fertility indices, and increased pre- and post-implantation losses were recorded in DC group. Following intervention with metformin, we observed increases in serum and intratesticular testosterone levels, Leydig cell count, improved sperm parameters, and decreased sperm nuclear DNA fragmentation. Furthermore, mRNA levels and activities of steroidogenesis-related enzymes were increased, with improved fertility outcome.

    DISCUSSION AND CONCLUSION: Diabetes mellitus is associated with dysregulation of steroidogenesis, abnormal spermatogenesis, and fertility decline. Controlling hyperglycemia is therefore crucial in preserving male reproductive function. Metformin not only regulates blood glucose level, but also preserves male fertility in diabetic state.

    Matched MeSH terms: Luteinizing Hormone/blood
  13. Haslan MA, Samsulrizal N, Hashim N, Zin NSNM, Shirazi FH, Goh YM
    BMC Complement Med Ther, 2021 Nov 29;21(1):291.
    PMID: 34844580 DOI: 10.1186/s12906-021-03452-6
    BACKGROUND: Insulin resistance and hormonal imbalances are key features in the pathophysiology of polycystic ovarian syndrome (PCOS). We have previously shown that Ficus deltoidea var. deltoidea Jack (Moraceae) can improve insulin sensitivity and hormonal profile in PCOS female rats. However, biological characteristics underpinning the therapeutic effects of F. deltoidea for treating PCOS remain to be clarified. This study aims to investigate the biochemical, hormonal, and histomorphometric changes in letrozole (LTZ)-induced PCOS female rats following treatment with F. deltoidea.

    METHODS: PCOS was induced in rats except for normal control by administering LTZ at 1 mg/kg/day for 21 days. Methanolic extract of F. deltoidea leaf was then orally administered to the PCOS rats at the dose of 250, 500, or 1000 mg/kg/day, respectively for 15 consecutive days. Lipid profile was measured enzymatically in serum. The circulating concentrations of reproductive hormone and antioxidant enzymes were determined by ELISA assays. Ovarian and uterus histomorphometric changes were further observed by hematoxylin and eosin (H&E) staining.

    RESULTS: The results showed that treatment with F. deltoidea at the dose of 500 and 1000 mg/kg/day reduced insulin resistance, obesity indices, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL), malondialdehyde (MDA), testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) to near-normal levels in PCOS rats. The levels of high-density lipoprotein cholesterol (HDL), estrogen, and superoxide dismutase (SOD) are also similar to those observed in normal control rats. Histomorphometric measurements confirmed that F. deltoidea increased the corpus luteum number and the endometrial thickness.

    CONCLUSIONS: F. deltoidea can reverse PCOS symptoms in female rats by improving insulin sensitivity, antioxidant activities, hormonal imbalance, and histological changes. These findings suggest the potential use of F. deltoidea as an adjuvant agent in the treatment program of PCOS.

    Matched MeSH terms: Luteinizing Hormone/blood
  14. Azimahtol Hawariah Lope Pihie, Embun Naim
    Malays J Reprod Health, 1983 Dec;1(2):176-80.
    PMID: 12313336
    Matched MeSH terms: Luteinizing Hormone
  15. Kitahashi T, Ogawa S, Soga T, Sakuma Y, Parhar I
    Endocrinology, 2007 Dec;148(12):5822-30.
    PMID: 17823257
    The role of steroid/thyroid hormones in the regulation of endocrine cells at the level of the pituitary has remained unclear. Therefore, using single-cell quantitative real-time PCR, we examined absolute amounts of transcripts for nuclear receptors [estrogen receptors (ERs) alpha, beta, and gamma; androgen receptors (ARs) a and b; glucocorticoid receptors (GRs) 1, 2a, and 2b; and thyroid hormone receptors (TRs) alpha1, alpha2, and beta] in pituitary cells of immature (IM) and mature (M) male tilapia, Oreochromis niloticus. In the two reproductive stages, ACTH cells expressed only ERbeta, whereas all other pituitary cell types expressed ERalpha + beta, and a subpopulation coexpressed ARa, ARb, GR1, GR2b, and TRbeta but lacked ERgamma, GR2a, TRalpha1, and TRalpha2. IM males had high percentages of LH cells (IM 46.0% vs. M 10.0%), GH cells (IM 23.3% vs. M 7.9%), and prolactin cells (IM 68.8% vs. M 6.0%) with ERbeta, and TSH cells (IM 19.2% vs. M 0.0%) and MSH cells (IM 25.6% vs. M 0.0%) with ERalpha + TRbeta. A high percentage of FSH cells in IM males expressed ERbeta (IM 46.9% vs. M 18.8%), and FSH cells in M males showed significantly high GR1 transcripts (IM 76.0 +/- 5.0 vs. M 195.0 +/- 10.7 copies per cell; P < 0.05), suggesting that FSH cells are regulated differently in the two reproductive stages. Coexpression of ERalpha + beta in high percentages of cells of the GH family (GH, IM 43.8% vs. M 14.3%; prolactin, IM 8.3% vs. M 59.7%; somatolactin, IM 22.2% vs. M 42.2%) suggests that the expression of both ERs is important for functionality. Thus, differential coexpression of genes for nuclear receptors in subpopulations of pituitary cell types suggests multiple steroid/thyroid hormone regulatory pathways at the level of the pituitary during the two reproductive stages.
    Matched MeSH terms: Luteinizing Hormone/genetics; Luteinizing Hormone/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links