Displaying publications 21 - 40 of 48 in total

Abstract:
Sort:
  1. Tee LF, Neoh HM, Then SM, Murad NA, Asillam MF, Hashim MH, et al.
    Life Sci Space Res (Amst), 2017 Nov;15:11-17.
    PMID: 29198309 DOI: 10.1016/j.lssr.2017.06.002
    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity lead to higher expression of non-coding RNA genes, which may play an epigenetic role in the worms during longer terms of microgravity exposure.
    Matched MeSH terms: Locomotion/drug effects
  2. Wong JH, Muthuraju S, Reza F, Senik MH, Zhang J, Mohd Yusuf Yeo NAB, et al.
    Biomed Pharmacother, 2019 Feb;110:168-180.
    PMID: 30469081 DOI: 10.1016/j.biopha.2018.11.044
    Centella asiatica (CA) is a widely used traditional herb, notably for its cognitive enhancing effect and potential to increase synaptogenesis. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory neurotransmission with key roles in long-term potentiation which is believed to be the cellular mechanism of learning and memory. Improved learning and memory can be an indication to the surface expression level of these receptors. Our previous study demonstrated that administration of CA extract improved learning and memory and enhanced expression of AMPAR GluA1 subunit while exerting no significant effects on GABAA receptors of the hippocampus in rats. Hence, to further elucidate the effects of CA, this study investigated the effects of CA extract in recognition memory and spatial memory, and its effects on AMPAR GluA1 and GluA2 subunit and NMDAR GluN2 A and GluN2B subunit expression in the entorhinal cortex (EC) and hippocampal subfields CA1 and CA3. The animals were administered with saline, 100 mg/kg, 300 mg/kg, and 600 mg/kg of CA extract through oral gavage for 14 days, followed by behavioural analysis through Open Field Test (OFT), Novel Object Recognition Task (NORT), and Morris Water Maze (MWM) and lastly morphological and immunohistochemical analysis of the surface expression of AMPAR and NMDAR subunits were performed. The results showed that 14 days of administration of 600 mg/kg of CA extract significantly improved memory assessed through NORT while 300 mg/kg of CA extract significantly improved memory of the animals assessed through MWM. Immunohistochemical analysis revealed differential modulation effects on the expressions of receptor subunits across CA1, CA3 and EC. The CA extract at the highest dose (600 mg/kg) significantly enhanced the expression of AMPAR subunit GluA1 and GluA2 in CA1, CA3 and EC, and NMDAR subunit GluN2B in CA1 and CA3 compared to control. At 300 mg/kg, CA significantly increased expression of AMPAR GluA1 in CA1 and EC, and GluA2 in CA1, CA3 and EC while 100 mg/kg of CA significantly increased expression of only AMPAR subunit GluA2 in CA3 and EC. Expression of NMDAR subunit GluN2 A was significantly reduced in the CA3 (at 100, 300, and 600 mg/kg) while no significant changes of subunit expression was observed in CA1 and EC compared to control. The results suggest that the enhanced learning and memory observed in animals administered with CA was mainly mediated through increased expression of AMPAR GluA1 and GluA2 subunits and differential expression of NMDAR GluN2 A and GluN2B subunits in the hippocampal subfields and EC. With these findings, the study revealed a new aspect of cognitive enhancing effect of CA and its therapeutic potentials through modulating receptor subunit expression.
    Matched MeSH terms: Locomotion/drug effects; Locomotion/physiology
  3. Chellian R, Pandy V
    Biomed Pharmacother, 2018 Dec;108:1591-1595.
    PMID: 30372861 DOI: 10.1016/j.biopha.2018.09.137
    Alpha-asarone is one of the bioactive phytochemicals present in the rhizomes of Acorus species and demonstrated its anticonvulsant activity in rodents. Alpha-asarone protected mice from the gamma-aminobutyric acid (GABA) type A receptor antagonist or N-methyl-d-aspartate (NMDA) receptor agonist-induced seizures. In our recent study, α-asarone attenuated the nicotine withdrawal-induced depression-like behavior in mice. The seizures induced by nicotine is mediated through the activation of nicotinic acetylcholine receptors (nAChRs) and stimulation of NMDA receptors. Therefore, we hypothesized that α-asarone might be effective against nicotine-induced seizures. Also, the interaction of α-asarone with nAChRs is unknown. In this study, we investigated the effect of α-asarone on the locomotor activity and body temperature in mice. In addition, we studied the effect of α-asarone on nicotine-induced seizures in mice. Finally, we assessed in vivo pharmacodynamic interaction of α-asarone with nAChRs using nicotine-induced hypomotility and hypothermia tests in mice. The results of this study showed that the α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) treatment significantly decreased the locomotor activity and body temperature in mice. Furthermore, α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) pretreatment significantly prolonged the onset time of nicotine-induced seizures in mice. However, α-asarone (30 and 50 mg/kg, i.p.) pretreatment did not inhibit the nicotine-induced hypomotility or hypothermia in mice. Conversely, mecamylamine (1 mg/kg, s.c.) pretreatment completely blocked the nicotine-induced seizures and significantly prevents the nicotine-induced hypomotility and hypothermia in mice. Overall, these results suggest that the protective effect of α-asarone against nicotine-induced seizures did not mediate through the antagonism of nAChRs. We also postulated that the GABAergic and glutamatergic activities of α-asarone could be involved in its protective effect against nicotine-induced seizures and based on this aspect further studies are required.
    Matched MeSH terms: Locomotion/drug effects; Locomotion/physiology
  4. Chandrasekhar A, Abu Osman NA, Tham LK, Lim KS, Wan Abas WA
    PLoS One, 2013;8(11):e80799.
    PMID: 24260483 DOI: 10.1371/journal.pone.0080799
    BACKGROUND: A clinical parameter commonly used to assess the neurological status of an individual is the tendon reflex response. However, the clinical method of evaluation often leads to subjective conclusions that may differ between examiners. Moreover, attempts to quantify the reflex response, especially in older age groups, have produced inconsistent results. This study aims to examine the influence of age on the magnitude of the patellar tendon reflex response.

    METHODOLOGY/PRINCIPAL FINDINGS: This study was conducted using the motion analysis technique with the reflex responses measured in terms of knee angles. Forty healthy subjects were selected and categorized into three different age groups. Patellar reflexes were elicited from both the left and right patellar tendons of each subject at three different tapping angles and using the Jendrassik maneuver. The findings suggested that age has a significant effect on the magnitude of the reflex response. An angle of 45° may be the ideal tapping angle at which the reflex can be elicited to detect age-related differences in reflex response. The reflex responses were also not influenced by gender and were observed to be fairly symmetrical.

    CONCLUSIONS/SIGNIFICANCE: Neurologically normal individuals will experience an age-dependent decline in patellar reflex response.

    Matched MeSH terms: Locomotion
  5. Chellian R, Pandy V, Mohamed Z
    Front Pharmacol, 2016;7:72.
    PMID: 27065863 DOI: 10.3389/fphar.2016.00072
    Alpha (α)-asarone is one of the main psychoactive compounds, present in Acorus species. Evidence suggests that the α-asarone possess an antidepressant-like activity in mice. However, the exact dose-dependent effect of α-asarone and mechanism(s) involved in the antidepressant-like activity are not clear. The present study aimed to investigate the dose-dependent effect of α-asarone and the underlining mechanism(s) involved in the antidepressant-like activity of α-asarone in the mouse model of tail suspension test (TST). In this study, the acute effect of α-asarone per se at different doses (10-100 mg/kg, i.p.) on immobility in the TST was studied. Additionally, the possible mechanism(s) involved in the antidepressant-like effect of α-asarone was studied using its interaction with noradrenergic and serotonergic neuromodulators in the TST. The present results reveal that the acute treatment of α-asarone elicited biphasic responses on immobility such that the duration of the immobility time is significantly reduced at lower doses (15 and 20 mg/kg, i.p.) but increased at higher doses (50 and 100 mg/kg, i.p.) in the TST. Besides, α-asarone at higher doses (50 and 100 mg/kg, i.p.) significantly decreased the spontaneous locomotor activity. Moreover, pretreatment of mice with noradrenergic neuromodulators such as AMPT (100 mg/kg, i.p., a catecholamine synthesis inhibitor), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist) and with serotonergic neuromodulators such as PCPA (100 mg/kg, i.p., once daily for four consecutive days, a serotonin synthesis inhibitor,) and WAY100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist) significantly reversed the anti-immobility effect of α-asarone (20 mg/kg, i.p.). Taken together, our results suggest that the acute treatment with α-asarone elicited biphasic actions in the TST in which antidepressant-like effect was seen at relatively lower doses (15 and 20 mg/kg, i.p.) and depressive-like activity at relatively higher doses (50 and 100 mg/kg, i.p.). Furthermore, it has been revealed that the antidepressant-like effect of α-asarone could be mediated through both noradrenergic (α1 and α2 adrenoceptors) and serotonergic (particularly, 5-HT1A receptors) systems.
    Matched MeSH terms: Locomotion
  6. Osman A, Rampal KG
    Med J Malaysia, 1989 Mar;44(1):69-74.
    PMID: 2533959
    A study was conducted to determine the prevalence of locomotor disability in a Malay Community in Tanjung Karang, Kuala Selangor in 1984. The causes of these disabilities, the mobility and occupational handicaps they caused and the types of treatment received were determined. Fifty percent of the households in this area were selected by stratified random sampling and all persons above seven years of age were included in the sample. The prevalence of locomotor disability was 3.9%. The prevalence among males was 5.2% and among females 2.6%. The prevalence increased with age, being as low as 0.6% in the 7-14 year age group and as high as 20.5% in the above 55 year age group. The disabilities resulted mainly from trauma (49%) and musculoskeletal and neurological problems (46.9%). Ninety percent (44 cases) had difficulty only in performance of daily activity and 20 cases (40.8%) had no mobility handicap whatsoever. Forty two (85.7%) of the 49 cases had received treatment.
    Matched MeSH terms: Locomotion
  7. Sadiq MB, Ramanoon SZ, Mansor R, Syed-Hussain SS, Shaik Mossadeq WM
    Animals (Basel), 2020 Aug 27;10(9).
    PMID: 32867064 DOI: 10.3390/ani10091515
    Lameness resulting from claw lesions remains a pressing welfare issue in dairy cows. Claw trimming (CT) is a common practice for prevention and management of clinically lame cows. This review summarizes the results of studies that have investigated various claw trimming (CT) methods, their application in lameness management, and associations with the welfare and production of dairy cows. The papers included in this review fulfilled the following inclusion criteria: published in peer review journal or book chapter within the last 20 years (1999-2019), written in English, and focused on the application of CT for lameness management and the association with either welfare or production variables. Databases used included Google scholar, Web of Science and PubMed. A total of 748 records were assessed and 61 papers were eligible for inclusion and the main objectives and results were used to categorize the results under six topics: CT techniques, association between CT and claw overgrowth/specific claw lesions, timing and frequency of CT, association between CT and behavioral variables, association between CT and physiological parameters, and association between CT and production. The literature findings showed the existence of various CT methods with the common types including the Dutch Five-step, White Line, White Line Atlas, and Kansas techniques. There is data paucity on the efficacy of these techniques in lameness management; however, the slight procedural difference yields varying sole thicknesses and presentations which may influence their prophylactic use. Results regarding the impact of CT on welfare and production were discussed in relation to potential short and long-term benefits. Depending on the lesion type and severity level, CT may induce immediate painful sensation, stress, changes in lying down activities and reduction in milk yield, but the positive impacts were more evident at later stages of lactation following improvement in locomotion score. The majority of the reviewed studies were lacking a detailed description of CT techniques and claw health of the studied animals; thus, reducing the strength of demonstrating CT-related benefits. However, electronic recording of claw health data during every CT visit provides the basis for monitoring hoof health and could assist in curtailing some of these challenges. To elucidate CT-related benefits, certain areas requiring further research were highlighted such as ascertaining the appropriate timing for preventive CT and identifying cows that will benefit more from such intervention during lactation.
    Matched MeSH terms: Locomotion
  8. Norazrina Azmi, Loh WT, Siti Suriani Omar, Juriyati Jalil, Aishah Adam
    Sains Malaysiana, 2011;40:1097-1103.
    The aqueous extract of Prismatomeris glabra root has been used traditionally in Malaysia by the aborigines and certain rural Malays for its ergogenic effects, to maintain wellness and to enhance physical stamina. It has also been used as an aphrodisiac for generations in the east coast of Peninsular Malaysia. Previous studies have shown that plants with ergogenic effects may also act as a stimulant and impair cognitive function. Therefore, we seek to investigate the effects of P. glabra on non-spatial memory in male Sprague Dawley rats using object recognition test. Trial rats were injected intraperitoneally with an aqueous extract of P. glabra roots at doses of 50 and 100 mg/kg for the acute (30 min) and subacute (7 days) studies. Scopolamine (0.3 mg/kg) was used as a positive control only in the acute study meanwhile control rats were injected with saline. The locomotor activity of rats was also determined in the same test. We demonstrated that groups treated with 50 and 100 mg/kg of the extract lost their ability to discriminate the novel from familiar object in choice phase and did not alter the locomotor activity in both studies. Our results also indicated that the deficits in non-spatial working memory occured at these doses were not due to impaired locomotor activity.
    Matched MeSH terms: Locomotion
  9. Taufik M, Amin-Safwan A, Mohd Nordin AR, Shahrul I, Abol-Munafi AB, Ikhwanuddin M
    Data Brief, 2020 Apr;29:105232.
    PMID: 32099875 DOI: 10.1016/j.dib.2020.105232
    The present datasets were conducted to investigate glucose concentration in hemolymph, energy levels at selected body parts (hepatopancreas, muscle, gonad), and feces among different sexes of crabs cultured at four different water velocities (0, 20, 40, and 60 cm/s) during a 60-day culture period. A total of 102 immature crabs (51 males, and 51 females) were sampled from Kuala Muda, Kedah coastal water, Peninsular Malaysia (5°39'N 100°19'E) from April to November of 2018. Results indicated that glucose concentration was the highest at water velocity of 60 cm/s for both male and female crabs (♂: 3.76 ± 0.08 mmol/L; ♀: 3.63 ± 0.06 mmol/L), whereas at 0 cm/s, the lowest levels of glucose concentration (♂: 0.13 ± 0.08 mmol/L; ♀: 0.19 ± 0.06 mmol/L) were recorded. As for energy analysis in hepatopancreas, results showed that both male and female crabs recorded the highest levels at 0 cm/s (no flow) with 37.919 ± 0.07 KJ/g and 34.636 ± 0.50 KJ/g, respectively. Energy for locomotion (muscle) of male crabs recorded the highest at 0 cm/s (♂: 26.823 ± 0.06 KJ/g), meanwhile for females, the highest was recorded at 20 cm/s (26.607 ± 0.34 KJ/g). Energy for reproduction of males could not be compared due to an insufficient available amount of testes/vas deferens, whereas female crabs recorded the highest energy usage at 20 cm/s water velocity (♀: 37.895 ± 0.08 KJ/g). For feces, both male and female crabs recorded the lowest energy at 60 cm/s (♂: 5.841 ± 0.03 KJ/g; ♀: 5.393 ± 0.01 KJ/g). Glucose assessment showed a direct relationship between increased velocity and glucose secretion in hemolymph at high velocity of 60 cm/s (stress condition) compared to other treatments. Regarding energy analysis, this research improved the mechanism of hepatopancreas, gonad, muscle and feces functions in development and reproduction, while it shed light on the influence of velocity on energy metabolism of S. olivacea.
    Matched MeSH terms: Locomotion
  10. Kundap UP, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2017;8:515.
    PMID: 28824436 DOI: 10.3389/fphar.2017.00515
    Epilepsy is a neuronal disorder allied with distinct neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Impairment of the cognitive performances such as learning and memory is frequently observed in epileptic patients. Anti-epileptic drugs (AEDs) are efficient to the majority of patients. However, 30% of this population seems to be refractory to the drug treatment. These patients are not seizure-free and frequently they show impaired cognitive functions. Unfortunately, as a side effect, some AEDs could contribute to such impairment. The major problem associated with conducting studies on epilepsy-related cognitive function is the lack of easy, rapid, specific and sensitive in vivo testing models. However, by using a number of different techniques and parameters in the zebrafish, we can incorporate the unique feature of specific disorder to study the molecular and behavior basis of this disease. In the view of current literature, the goal of the study was to develop a zebrafish model of epilepsy induced cognitive dysfunction. In this study, the effect of AEDs on locomotor activity and seizure-like behavior was tested against the pentylenetetrazole (PTZ) induced seizures in zebrafish and epilepsy associated cognitive dysfunction was determined using T-maze test followed by neurotransmitter estimation and gene expression analysis. It was observed that all the AEDs significantly reversed PTZ induced seizure in zebrafish, but had a negative impact on cognitive functions of zebrafish. AEDs were found to modulate neurotransmitter levels, especially GABA, glutamate, and acetylcholine and gene expression in the drug treated zebrafish brains. Therefore, combination of behavioral, neurochemical and genenetic information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
    Matched MeSH terms: Locomotion
  11. Mohamed AM
    Malays J Med Sci, 2008 Jan;15(1):4-12.
    PMID: 22589609 MyJurnal
    Bone is a specialised connective tissue and together with cartilage forms the strong and rigid endoskeleton. These tissues serve three main functions: scaffold for muscle attachment for locomotion, protection for vital organs and soft tissues and reservoir of ions for the entire organism especially calcium and phosphate. One of the most unique and important properties of bone is its ability to constantly undergo remodelling even after growth and modelling of the skeleton have been completed. Remodelling processes enable the bone to respond and adapt to changing functional situations. Bone is composed of various types of cells and collagenous extracellular organic matrix, which is predominantly type I collagen (85-95%) called osteoid that becomes mineralised by the deposition of calcium hydroxyapatite. The non-collagenous constituents are composed of proteins and proteoglycans, which are specific to bone and the dental hard connective tissues. Maintenance of appropriate bone mass depends upon the precise balance of bone formation and bone resorption which is facilitated by the ability of osteoblastic cells to regulate the rate of both differentiation and activity of osteoclasts as well as to form new bone. An overview of genetics and molecular mechanisms that involved in the differentiation of osteoblast and osteoclast is discussed.
    Matched MeSH terms: Locomotion
  12. Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, et al.
    Brain Behav, 2018 09;8(9):e01093.
    PMID: 30105867 DOI: 10.1002/brb3.1093
    INTRODUCTION: Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats.

    METHODS: The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals.

    RESULTS: We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p  0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus.

    CONCLUSIONS: The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.

    Matched MeSH terms: Locomotion/drug effects
  13. Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG
    Environ Sci Pollut Res Int, 2019 Oct;26(30):30693-30710.
    PMID: 31463749 DOI: 10.1007/s11356-019-06278-5
    The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
    Matched MeSH terms: Locomotion/radiation effects
  14. Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z
    J Ethnopharmacol, 2018 Oct 05;224:381-390.
    PMID: 29920356 DOI: 10.1016/j.jep.2018.06.020
    ETHNOPHARMACOLOGICAL RELEVANCE: Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored.

    AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.

    MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).

    RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.

    CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.

    Matched MeSH terms: Locomotion/drug effects
  15. Al-Abd NM, Nor ZM, Mansor M, Hasan MS, Kassim M
    Korean J Parasitol, 2016 Jun;54(3):273-80.
    PMID: 27417081 DOI: 10.3347/kjp.2016.54.3.273
    We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.
    Matched MeSH terms: Locomotion/drug effects
  16. Zadeh-Ardabili PM, Rad SK, Rad SK, Khazaài H, Sanusi J, Zadeh MH
    Sci Rep, 2017 10 30;7(1):14365.
    PMID: 29085045 DOI: 10.1038/s41598-017-14765-3
    Spinal cord injury (SCI) occurs following different types of crushes. External and internal outcomes of SCI are including paralysis, cavity, and cyst formation. Effects of dietary derived antioxidants, such as palm vitamin E on central nervous system (CNS) encourage researchers to focus on the potential therapeutic benefits of antioxidant supplements. In the present study, experiments were carried out to evaluate the neuro-protective effect of the palm vitamin E on locomotor function and morphological damages induced SCI. Seventy-two male rats (Sprague-Dawley) were randomly divided into four groups: sham (laminectomy); control (supplemented with the palm vitamin E at a dose of 100 mg/kg/day); untreated-SCI (partial crush, 30-33% for 20 sec); treated-SCI (partial crush, 30-33% for 20 sec supplemented with the palm vitamin E at a dose of 100 mg/kg/day). The treatment with the palm vitamin E significantly improved the hind limb locomotor function, reduced the histopathological changes and the morphological damage in the spinal cord. Also, the palm vitamin E indicated a statistically significant decrease in the oxidative damage indicators, malondialdehyde (MDA) level and glutathione peroxidase (GPx) activity in the treated-SCI compared to the untreated-SCI.
    Matched MeSH terms: Locomotion/physiology
  17. Mortaza N, Abu Osman NA, Jamshidi AA, Razjouyan J
    PLoS One, 2013;8(5):e64308.
    PMID: 23717593 DOI: 10.1371/journal.pone.0064308
    Use of functional knee braces has been suggested to provide protection and to improve kinetic performance of the knee in Anterior cruciate ligament(ACL)-injured patients. However, many athletes might refrain from wearing the braces because of the fear of performance hindrance in the playing field. The aim of this study was to examine the effect of three functional knee brace/sleeves upon the isokinetic and functional performance of ACL-deficient and healthy subjects. Six anterior cruciate ligament deficient (29.0 ± 5.3 yrs., 175.2 ± 5.4 cm, and 73.0 ± 10.0 kg) and six healthy male subjects (27.2 ± 3.7 yrs., 176.4 ± 6.4 cm, and 70.3 ± 6.9 kg) were selected. The effect of a custom-made functional knee brace, and two neoprene knee sleeves, one with four metal supports and one without support were examined via the use of isokinetic and functional tests in four sets (non-braced,wearing functional knee brace,and wearing the sleeves). Cross-over hop and single leg vertical jump test were performed and jump height, and hop distance were recorded. Peak torque to body weight ratio and average power in two isokinetic velocities(60°.s(-1),180°.s(-1)) were recorded and the brace/sleeves effect was calculated as the changes in peak torque measured in the brace/sleeves conditions, expressed as a percentage of peak torque measured in non-braced condition. Frequency content of the isokinetic torque-time curves was also analyzed. Wilcoxon signed rank test was used to compare the measured values in four test conditions within each control and ACL-deficient group,and Mann-Whitney U test was used for the comparison between the two groups. No significant differences in peak torque, average power, torque-time curve frequency content, vertical-jump and hop measurements were found within the experimental and the non-braced conditions (p>0.05). Although the examined functional knee brace/sleeves had no significant effect on the knee muscle performance, there have been some enhancement regarding the extension peak torques and power generating capacity of the ACL-deficient subjects that could be helpful in reducing the bilateral asymmetry in these patients.
    Matched MeSH terms: Locomotion
  18. Chivers DJ, Raemaekers JJ, Aldrich-Blake FP
    Folia Primatol., 1975;23(1-2):1-49.
    PMID: 1140747
    Long-term observations are presented on the behaviour of the siamang ape, Symphalangus syndactylus, in the lowland forest of central Malaya. The data were collected during two dry and three fruiting seasons between 1969 and 1973 inclusive on two groups with adjacent ranges; comparisons are made within and between sample periods, and between groups. The influence of weather on daily activities is considered. Food intake is analysed in terms of number of food trees, number of visits to these trees, and the cumulative time spent feeding on various food categories. Ranging behaviour is investigated in terms of distance travelled, area covered, and distribution of time and of food trees about the range. The occurrence of calling is described and compared with that of the white-handed gibbon in the same area. A discussion ensues on each of these aspects of behaviour in turn. Emphasis is laid on the similarity of behaviour of the two groups at any one time, and on the degree of their response to the fluctuations of environment variables. Finally, the application to siamang of ranging concepts currently used in animal behaviour is considered briefly.
    Matched MeSH terms: Locomotion
  19. Wei J, Yang F, Gong C, Shi X, Wang G
    J Biochem Mol Toxicol, 2019 Jun;33(6):e22319.
    PMID: 30897277 DOI: 10.1002/jbt.22319
    Oxidative stress is performing an essential role in developing Alzheimer's disease (AD), and age-related disorder and other neurodegenerative diseases. In existing research, we have aimed at investigating the daidzein (4',7-dihydroxyisoflavone) effect (10 and 20 mg/kg of body weight), as a free radical scavenger and antioxidant in streptozotocin (STZ) infused AD in rat model. Daidzein treatment led to significant improvement in intracerebroventricular-streptozotocin (ICV-STZ)-induced memory and learning impairments that was evaluated by Morris water maze test and spontaneous locomotor activity. It significantly restored the alterations in malondialdehyde, catalase, superoxide dismutase, and reduced glutathione levels. In addition, histopathological observations in cerebral cortex and hippocampal areas confirmed the neuroprotective effect of daidzein. These outcomes provide experimental proof showing preventive effect of daidzein on memory, learning dysfunction and oxidative stress in case of ICV-STZ rats. In conclusion, daidzein offers a potential treatment module for various neurodegenerative disorders with regard to mental deficits like AD.
    Matched MeSH terms: Locomotion
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links