Displaying publications 21 - 40 of 189 in total

Abstract:
Sort:
  1. Mohd Isa KN, Jalaludin J, Mohd Elias S, Mohamed N, Hashim JH, Hashim Z
    PMID: 35457448 DOI: 10.3390/ijerph19084580
    Numerous epidemiological studies have evaluated the association of fractional exhaled nitric oxide (FeNO) and indoor air pollutants, but limited information available of the risks between schools located in suburban and urban areas. We therefore investigated the association of FeNO levels with indoor particulate matter (PM10 and PM2.5), and nitrogen dioxide (NO2) exposure in suburban and urban school areas. A comparative cross-sectional study was undertaken among secondary school students in eight schools located in the suburban and urban areas in the district of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected, their FeNO levels were measured, and allergic skin prick tests were conducted. The PM2.5, PM10, NO2, and carbon dioxide (CO2), temperature, and relative humidity were measured inside the classrooms. We found that the median of FeNO in the school children from urban areas (22.0 ppb, IQR = 32.0) were slightly higher as compared to the suburban group (19.5 ppb, IQR = 24.0). After adjustment of potential confounders, the two-level hierarchical multiple logistic regression models showed that the concentrations of PM2.5 were significantly associated with elevated of FeNO (>20 ppb) in school children from suburban (OR = 1.42, 95% CI = 1.17−1.72) and urban (OR = 1.30, 95% CI = 1.10−1.91) areas. Despite the concentrations of NO2 being below the local and international recommendation guidelines, NO2 was found to be significantly associated with the elevated FeNO levels among school children from suburban areas (OR = 1.11, 95% CI = 1.06−1.17). The findings of this study support the evidence of indoor pollutants in the school micro-environment associated with FeNO levels among school children from suburban and urban areas.
    Matched MeSH terms: Environmental Exposure/analysis
  2. Praveena SM, Teh SW, Rajendran RK, Kannan N, Lin CC, Abdullah R, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(12):11333-11342.
    PMID: 29546515 DOI: 10.1007/s11356-018-1652-8
    Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate's internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.
    Matched MeSH terms: Environmental Exposure/analysis
  3. Otuyo MK, Nadzir MSM, Latif MT, Din SAM
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121306-121337.
    PMID: 37993649 DOI: 10.1007/s11356-023-30923-9
    This comprehensive paper conducts an in-depth review of personal exposure and air pollutant levels within the microenvironments of Asian city transportation. Our methodology involved a systematic analysis of an extensive body of literature from diverse sources, encompassing a substantial quantity of studies conducted across multiple Asian cities. The investigation scrutinizes exposure to various pollutants, including particulate matters (PM10, PM2.5, and PM1), carbon dioxide (CO2), formaldehyde (CH2O), and total volatile organic compounds (TVOC), during transportation modes such as car travel, bus commuting, walking, and train rides. Notably, our review reveals a predominant focus on PM2.5, followed by PM10, PM1, CO2, and TVOC, with limited attention given to CH2O exposure. Across the spectrum of Asian cities and transportation modes, exposure concentrations exhibited considerable variability, a phenomenon attributed to a multitude of factors. Primary sources of exposure encompass motor vehicle emissions, traffic dynamics, road dust, and open bus doors. Furthermore, our findings illuminate the influence of external environments, particularly in proximity to train stations, on pollutant levels inside trains. Crucial factors affecting exposure encompass ventilation conditions, travel-specific variables, seat locations, vehicle types, and meteorological influences. The culmination of this rigorous review underscores the need for standardized measurements, enhanced ventilation systems, air filtration mechanisms, the adoption of clean energy sources, and comprehensive public education initiatives aimed at reducing pollutant exposure within city transportation microenvironments. Importantly, our study contributes to the growing body of knowledge surrounding this subject, offering valuable insights for policymakers and researchers dedicated to advancing air quality standards and safeguarding public health.
    Matched MeSH terms: Environmental Exposure/analysis
  4. Wee SY, Aris AZ
    Environ Int, 2017 09;106:207-233.
    PMID: 28552550 DOI: 10.1016/j.envint.2017.05.004
    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water.
    Matched MeSH terms: Environmental Exposure*
  5. Inayat-Hussain SH, Fukumura M, Muiz Aziz A, Jin CM, Jin LW, Garcia-Milian R, et al.
    Environ Int, 2018 08;117:348-358.
    PMID: 29793188 DOI: 10.1016/j.envint.2018.05.010
    BACKGROUND: Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases.

    METHODS: GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects.

    RESULTS: We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide.

    CONCLUSIONS: Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.

    Matched MeSH terms: Environmental Exposure/analysis*
  6. Padhi BK, Khatib MN, Ballal S, Bansal P, Bhopte K, Gaidhane AM, et al.
    BMC Public Health, 2024 Nov 22;24(1):3251.
    PMID: 39578775 DOI: 10.1186/s12889-024-20693-5
    BACKGROUND: People living with HIV (PLWH) are more vulnerable to infectious and non-infectious comorbidities due to chronic inflammation and immune dysfunction. Air pollution is a major global health risk, contributing to millions of deaths annually, primarily from cardiovascular and respiratory diseases. However, the link between air pollution and mortality risk in PLWH is underexplored. This systematic review assesses the association between exposure to pollutants such as particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO) and mortality risk in PLWH.

    METHODS: A systematic search of PubMed, Web of Science, and Embase was conducted for studies published up to August 2024. Eligibility criteria included cohort, case-control, and cross-sectional studies assessing air pollution exposure and mortality in PLWH. Nested-Knowledge software was used for screening and data extraction. The Newcastle-Ottawa Scale was applied for quality assessment. A narrative approach and tabular summarization were used for data synthesis and presentation.

    RESULTS: Nine studies, mostly from China, demonstrated a significant association between long-term exposure to PM1, PM2.5, and PM10 and increased risks of AIDS-related and all-cause mortality in PLWH. Hazard ratios for mortality increased by 2.38-5.13% per unit increase in PM concentrations, with older adults (> 60), females, and those with lower CD4 counts (

    Matched MeSH terms: Environmental Exposure/adverse effects
  7. Hashim JH, Hashim Z, Omar A, Shamsudin SB
    Asia Pac J Public Health, 2000;12(2):65-70.
    PMID: 11836921
    The objective of this article is to study the influence of exposure and socio-economic variables on the blood lead level of Malaysian school children. Data on respirable lead and blood lead of 346 school children were obtained from Kuala Lumpur (urban), Kemaman (semi-urban) and Setiu (rural). Respirable lead and blood lead were highest for Kuala Lumpur (95 ng/m3 and 5.26 micrograms/dL) followed by Kemaman (27 ng/m3 and 2.81 micrograms/dL) and Setiu (15 ng/m3 and 2.49 micrograms/dL), and the differences were statistically significant. The percentage of school children with excessive blood lead of 10 micrograms/dL or greater was 6.36% overall, and highest for Kuala Lumpur (11.73%). Regression analyses show that urban children are at higher risk of exhibiting excessive blood lead levels. Kuala Lumpur's school children have a 25 times greater risk of having excessive blood lead levels when compared to Kemaman's and Setiu's school children. Respirable and blood lead were correlated (r = 0.999, p = 0.021). Urban school children acquire higher blood lead levels than their rural and semi-urban counterparts, even after controlling for age, sex, parents' education and income levels. In conclusion, it is time that lead in the Malaysian environment and population be monitored closely, especially its temporal and spatial variability. Only then can a comprehensive preventive strategy be implemented.
    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/prevention & control; Environmental Exposure/statistics & numerical data
  8. Hisham HJ, Chuah SY, Syarif HL, Nik Nasri I, Fairulnizam MN
    Med J Malaysia, 1998 Mar;53(1):76-81.
    PMID: 10968142
    A study was conducted to compare the blood lead levels of 97 pregnant women warded at the Kuala Lumpur Hospital, according to their ethnicity, residence and place of work. The lead content of venous blood samples was determined with a graphic furnace atomic absorption spectrometer. Blood lead levels of Klang Valley women seem to have decreased from 17.3 micrograms/dl in 1982 to 7.71 micrograms/dl in the present study most probably attributed to the phasing out of leaded gasoline. This level is below the 10 micrograms/dl recommended by the United States Environmental Protection Agency for the public, even though 27.8% of them still have blood lead levels that are equal to or in excess of 10 micrograms/dl. The study shows that certain segments of the population such as Indians (geometric mean = 9.35 micrograms/dl) and housewives (geometric mean = 9.55 micrograms/dl) may still experience blood lead levels that are slightly elevated than the rest of the population.
    Matched MeSH terms: Environmental Exposure
  9. Jorgensen HS, Singh A
    J Occup Med, 1978 Jun;20(6):385, 389, 391.
    PMID: 671113
    Matched MeSH terms: Environmental Exposure
  10. Jeyaindran S
    Med J Malaysia, 2006 Mar;61(1):117-21.
    PMID: 16708750
    From the beginning of time, man has lived in a continuous state of interdependence with his environment. If the forces of nature are harnessed well, they are a source of great benefit to mankind, but when this balance is tipped, nature's backlash on man can be quite devastating. In recent times, we have seen many vivid examples of the magnitude of the destructive forces of nature, ranging from massive floods caused by typhoons such as Katrina and Rita, the hundreds of thousands of lives lost by the powerful tsunami and the destruction of the environment by the raging forest fires in Spain and California. Yet man has not learnt his lesson. Often greed, at times gross ignorance and more often than not, just indifference to the effects of his actions on the environment result in man upsetting his balance with the environment. In Malaysia, since 1990, the haze has become a predictable annual occurrence, varying only in its severity and duration. The cause being beyond our control, we are unable to prevent it from happening. However, it is within our means to be ready to take the necessary steps to minimize the effects of the haze on the health of Malaysians. In order to be able to give appropriate advice and to allay the anxiety of the general public, it is necessary to have a clear understanding about the various effects of haze on humans.
    Matched MeSH terms: Environmental Exposure/adverse effects*; Environmental Exposure/prevention & control
  11. Chin CK, Abdullah A, Sugita-Konishi Y
    PMID: 24786411 DOI: 10.1080/19393210.2012.713028
    Exposure to aflatoxins in the adult Malaysian diet was estimated by analysing aflatoxins in 236 food composites prepared as "ready for consumption". Dietary exposure to aflatoxin B1 (AFB1) ranged from 24.3 to 34.00 ng/kg b.w./day (lower to upper bound), with peanuts being the main contributor. Estimated liver cancer risk from this exposure was 0.61-0.85 cancers/100,000 population/year, contributing 12.4%-17.3% of the liver cancer cases. Excluding AFB1 occurrence data higher than 15 µg/kg reduced exposure by 65%-91% to 2.27-11.99 ng/kg b.w./day, reducing the cancer risk to 0.06-0.30 cancers/100,000 population/year (contributing 1.2%-6.1% liver cancer cases). Reducing further the ML of AFB1 from 15 to 5 µg/kg yielded 3%-7% greater drop in the exposure to 0.47-10.26 ng/kg b.w./day with an estimated risk of 0.01-0.26 cancers/100,000 population/year (0.2%-5.1% liver cancer cases attributed to dietary AFB1). These findings indicate that current MLs are adequate in protecting Malaysians' health.
    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/analysis*
  12. Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, et al.
    Sci Total Environ, 2017 Dec 01;601-602:556-570.
    PMID: 28575833 DOI: 10.1016/j.scitotenv.2017.05.153
    This study aims to determine PM2.5concentrations and their composition during haze and non-haze episodes in Kuala Lumpur. In order to investigate the origin of the measured air masses, the Numerical Atmospheric-dispersion Modelling Environment (NAME) and Global Fire Assimilation System (GFAS) were applied. Source apportionment of PM2.5was determined using Positive Matrix Factorization (PMF). The carcinogenic and non-carcinogenic health risks were estimated using the United State Environmental Protection Agency (USEPA) method. PM2.5samples were collected from the centre of the city using a high-volume air sampler (HVS). The results showed that the mean PM2.5concentrations collected during pre-haze, haze and post-haze periods were 24.5±12.0μgm-3, 72.3±38.0μgm-3and 14.3±3.58μgm-3, respectively. The highest concentration of PM2.5during haze episode was five times higher than World Health Organisation (WHO) guidelines. Inorganic compositions of PM2.5, including trace elements and water soluble ions were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC), respectively. The major trace elements identified were K, Al, Ca, Mg and Fe which accounted for approximately 93%, 91% and 92% of the overall metals' portions recorded during pre-haze, haze and post-haze periods, respectively. For water-soluble ions, secondary inorganic aerosols (SO42-, NO3-and NH4+) contributed around 12%, 43% and 16% of the overall PM2.5mass during pre-haze, haze and post-haze periods, respectively. During haze periods, the predominant source identified using PMF was secondary inorganic aerosol (SIA) and biomass burning where the NAME simulations indicate the importance of fires in Sumatra, Indonesia. The main source during pre-haze and post-haze were mix SIA and road dust as well as mineral dust, respectively. The highest non-carcinogenic health risk during haze episode was estimated among the infant group (HI=1.06) while the highest carcinogenic health risk was estimated among the adult group (2.27×10-5).
    Matched MeSH terms: Environmental Exposure/analysis*; Environmental Exposure/statistics & numerical data
  13. Junus S, Chew CC, Sugunan P, Meor-Aziz NF, Zainal NA, Hassan HM, et al.
    BMC Public Health, 2021 10 15;21(1):1860.
    PMID: 34654405 DOI: 10.1186/s12889-021-11825-2
    BACKGROUND: Secondhand smoke (SHS) exposure can affect physical development in children. An understanding of parental risk perception of SHS could guide efforts to develop measures for prevention of SHS exposure among children. This study aimed to assess parental risk perceptions of SHS and action taken by parents to minimise SHS exposure in their children.

    METHODS: This cross-sectional nationwide study conducted in 2018 recruited convenience sample of 289 parents with children up to age 12 at public areas. Parents were asked to rate the risk level from 1 (no risk) to 5 (extremely high risk) by looking at photographs of an adult smoking in the presence of a child in 8 different situations. The implementation of smoking restriction rules was assessed. Mean scores were calculated with higher scores representing higher risk perception of SHS to child's health. Linear regression analysis was used to determine factors associated with the level of parental risk perception of SHS exposure to their children's health.

    RESULTS: A total of 246 parents responded. Their mean age was 35 years (SD 6.4). The majority were mothers (75.6%), Malays (72.0%) and had tertiary education level (82.5%), and non-smoker (87.1%). The mean age of respondents' youngest child was 3 years (SD 3.1). The risk perception level was high [mean scores: 4.11 (SD: 0.82)]. Most parents implemented household (65.0%) and car (68.3%) smoking restriction rules. Lower levels of risk perception were observed among participants who were current smokers (p 

    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/analysis
  14. Suhaimi NF, Jalaludin J, Mohd Juhari MA
    Int J Environ Health Res, 2022 Mar;32(3):535-546.
    PMID: 32579034 DOI: 10.1080/09603123.2020.1784397
    Increasing the range of vehicles on traffic roads in the urban area has led to traffic-related air pollution (TRAP) and is currently becoming the main concern for health, especially among children. The study aimed to determine associations between TRAP and respiratory health, also to identify the main factors that influenced them. A cross-sectional comparative study was carried out among children in high and low traffic areas. Air quality monitoring was conducted in six primary schools. A set of standardized questionnaires was distributed to obtain respondents' exposure history and respiratory health symptoms, while spirometry test was carried out to determine the lung function status. There were associations between TRAP and abnormality of FEV1% among children. NO2 was the main predictor that influenced both chest tightness and abnormality of FEV1%. Children exposed to a high level of traffic-related air pollution have an increased risk of respiratory symptoms and abnormality of lung function.
    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/analysis
  15. Rafi'i MR, Ja'afar MH, Abd Wahil MS, Md Hanif SA
    PeerJ, 2024;12:e17660.
    PMID: 38974411 DOI: 10.7717/peerj.17660
    BACKGROUND: The development of autism spectrum disorder (ASD) may stem from exposure to environmental pollutants such as heavy metals. The primary objective of this study is to determine the role of heavy metals of concern such as manganese (Mn), cadmium (Cd), lead (Pb), arsenic (As), and essential trace element selenium (Se) among ASD children in Kuala Lumpur, Malaysia.

    METHOD: A total of 155 preschoolers in Kuala Lumpur between the ages 3 to 6 participated in an unmatched case-control study, comprising ASD children (n = 81) recruited from an early intervention program for autism, and 74 children without autism who were recruited from public preschools. Urine samples were collected at home, delivered to the study site, and transported to the environmental lab within 24 hours. Inductively coupled plasma mass spectrometry (ICP-MS) was applied to measure the concentration of heavy metals in the samples. Data were analysed using bivariate statistical tests (Chi-square and T-test) and logistic regression models.

    RESULT: This study demonstrated that Cd, Pb, and As urine levels were significantly greater in children without autism relative to those affected with ASD (p  1, p 

    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/analysis
  16. Tajudin MABA, Madaniyazi L, Seposo X, Sahani M, Tobías A, Latif MT, et al.
    Int J Epidemiol, 2024 Jun 12;53(4).
    PMID: 39096096 DOI: 10.1093/ije/dyae102
    BACKGROUND: Biomass burning (BB) is a major source of air pollution and particulate matter (PM) in Southeast Asia. However, the health effects of PM smaller than 10 µm (PM10) originating from BB may differ from those of other sources. This study aimed to estimate the short-term association of PM10 from BB with respiratory and cardiovascular hospital admissions in Peninsular Malaysia, a region often exposed to BB events.

    METHODS: We obtained and analyzed daily data on hospital admissions, PM10 levels and BB days from five districts from 2005 to 2015. We identified BB days by evaluating the BB hotspots and backward wind trajectories. We estimated PM10 attributable to BB from the excess of the moving average of PM10 during days without BB hotspots. We fitted time-series quasi-Poisson regression models for each district and pooled them using meta-analyses. We adjusted for potential confounders and examined the lagged effects up to 3 days, and potential effect modification by age and sex.

    RESULTS: We analyzed 210 960 respiratory and 178 952 cardiovascular admissions. Almost 50% of days were identified as BB days, with a mean PM10 level of 53.1 µg/m3 during BB days and 40.1 µg/m3 during normal days. A 10 µg/m3 increment in PM10 from BB was associated with a 0.44% (95% CI: 0.06, 0.82%) increase in respiratory admissions at lag 0-1, with a stronger association in adults aged 15-64 years and females. We did not see any significant associations for cardiovascular admissions.

    CONCLUSIONS: Our findings suggest that short-term exposure to PM10 from BB increased the risk of respiratory hospitalizations in Peninsular Malaysia.

    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/statistics & numerical data
  17. Guo Y, Alomirah H, Cho HS, Minh TB, Mohd MA, Nakata H, et al.
    Environ Sci Technol, 2011 Apr 1;45(7):3138-44.
    PMID: 21395215 DOI: 10.1021/es103879m
    The occurrence of 14 phthalate metabolites was found in human urine samples collected from seven Asian countries: China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam. Phthalate metabolites were found in all samples, indicating widespread exposure of humans to phthalates in these Asian countries. The highest total (the sum of 14 phthalates) phthalate metabolite concentrations were found in samples collected from Kuwait (median: 1050 ng/mL), followed in decreasing order by samples from India (389 ng/mL), China (234 ng/mL), Vietnam (133 ng/mL), Japan (120 ng/mL), Korea (117 ng/mL), and Malaysia (94.9 ng/mL). The creatinine-adjusted median concentrations of total phthalates for urine samples from Kuwait, India, China, Vietnam, Japan, Korea, and Malaysia were 692, 506, 289, 119, 103, 104, and 169 μg/g creatinine, respectively. Monomethyl phthalate (mMP), monoethyl phthalate (mEP), mono (2-isobutyl phthalate) (miBP), mono-n-butyl phthalate (mBP), and metabolites of di-(2-ethylhexyl) phthalate (DEHP) were the dominant compounds, collectively accounting for >95% of the total concentrations in the samples from the seven countries. The profiles of urinary phthalate metabolite concentrations varied among the samples collected from the seven countries. Urine samples from Kuwait contained the highest concentrations of mEP (median: 391 ng/mL), mBP (94.1 ng/mL), and the metabolites of DEHP (202 ng/mL), whereas samples from China and Japan contained the highest concentrations of miBP (50.8 ng/mL) and mMP (17.5 ng/mL), respectively. mEP was the predominant metabolite in urine samples from India and Kuwait (accounting for 49% of the total), mBP and miBP were the predominant compounds in samples from China (52%), and DEHP metabolites were the predominant compounds in samples from Korea (46%) and Vietnam (52%). Based on the urinary concentrations of mEP, mBP, miBP, and DEHP metabolites of the samples from the seven Asian countries, we estimated daily intake rates of diethyl phthalate (DEP), dibutyl phthalate (DBP), and DEHP. The results indicated that people in the seven Asian countries are exposed to DEP, DBP, and DEHP at levels well below the reference doses (RfD) suggested as unsafe by the U.S. Environmental Protection Agency (EPA). The estimated exposure doses to DEHP in Kuwait, however, were above the RfD recommended by the EPA.
    Matched MeSH terms: Environmental Exposure/analysis; Environmental Exposure/statistics & numerical data*
  18. Hock RH
    Aust N Z J Public Health, 2009 Apr;33(2):194-5.
    PMID: 19413867 DOI: 10.1111/j.1753-6405.2009.00370.x
    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/prevention & control*
  19. Alam L, Rahman LF, Ahmed MF, Bari MA, Masud MM, Mokhtar MB
    Environ Geochem Health, 2021 May;43(5):2049-2063.
    PMID: 33389458 DOI: 10.1007/s10653-020-00783-0
    Rivers, the main source of the domestic water supply in Malaysia, have been threatened by frequent flooding in recent years. This study aims to assess human health risks associated with exposure to concentrated heavy metals in a flood-prone region of Malaysia and investigate the affected individuals' willingness to participate in managing water resources. Hazard indices and cancer risks associated with water contamination by heavy metals have been assessed following the method prescribed by the US Environmental Protection Agency. Yearly data of heavy metal contamination (Cd, Cr, Pb, Zn, Fe), water quality parameters (DO, BOD, COD, pH), and climatic information (annual rainfall, annual temperature) have been collected from the Department of Environment and Meteorological Department of Malaysia, respectively. The inductively coupled plasma mass spectrometry technique has been used by the department of environment for analyzing heavy metal concentration in river water samples. In this study, data from a stratified random sample of households in the affected region were analyzed, using partial least squares structural equation modeling, to predict the link between individuals' perceptions and attitudes about water resources and their willingness to engage in water management program. The health risk estimation indicated that the hazard index values were below the acceptable limit, representing no non-carcinogenic risk to adults and children residing in the study area via oral intake and dermal adsorption of water. However, the calculated value for cancer risk signified possible carcinogenic risks associated with Pb and Cd. In general, contamination due to pollution and flooding tends to increase in the basin region, and appropriate management is needed. The results identified perceived water quality as a significant factor influencing people's attitudes toward involvement in water management programs. As in many developing countries, there is no legal provision guaranteeing public representation in water management in Malaysia. The conclusion discusses the importance of these for the literature and for informing future policy actions.
    Matched MeSH terms: Environmental Exposure/adverse effects; Environmental Exposure/analysis
  20. Mat Sutris J, Md Isa Z, Sumeri SA, Ghazi HF
    Ann Glob Health, 2017 3 12;82(5):770-778.
    PMID: 28283128 DOI: 10.1016/j.aogh.2016.10.008
    BACKGROUND: Increasing use of pesticides in agriculture to control pest may result in permanent damage to the environment and consequently cause harmful health problems especially among infant and children. Due to pesticide's natural toxicity and its widespread use, it causes a serious threat to public health especially to this vulnerable group.

    OBJECTIVE: The purpose of this study was to determine the organophosphorus pesticide urinary metabolite levels and its predictors among Orang Asli children of the Mah Meri tribe living in an agricultural island in Kuala Langat, Selangor.

    METHODS: Data collection was carried out at an island in Kuala Langat, Selangor, where a total of 180 Orang Asli children of the Mah Meri tribe voluntarily participated in the study. Data were collected via a validated, modified questionnaire. Urinary organophosphate metabolites, namely dimethylphosphate, diethylphosphate, dimethylthiophosphate, dimethyldithiophosphate, diethylthiophosphate, and diethyldithiophosphate were measured to assess organophosphate pesticide exposure in children.

    FINDINGS: Eighty-four (46.7%) of the respondents were positive for urine dialkyl phosphate metabolites. In multivariable analysis, children who frequently consumed apples had 4 times higher risk of pesticide detection than those who consumed apple less frequently. In addition, those who frequently ate cucumbers had 4 times higher risk for pesticide detection than those who ate cucumbers less frequently. Children with a father whose occupation involved high exposure to pesticides (agriculture) had 3 times higher risk of pesticide detection than those with a father in a low-risk occupation (nonagriculture).

    CONCLUSIONS: Almost half of the children (46.7%) in the study area tested positive for urinary dialkyl phosphate metabolite levels. Most of the metabolite levels were equal to or higher than that reported in other previous studies. Major factors associated with pesticide detection in children in this study were frequent intake of apple and cucumber and fathers who are working in an agricultural area.

    Matched MeSH terms: Environmental Exposure/analysis*; Environmental Exposure/statistics & numerical data
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links