METHODS: In a community-based study, faecal samples were collected from 605 participants and examined by wet mount, formalin-ether sedimentation, trichrome staining and nested multiplex PCR techniques. Demographic, socio-economic and environmental information was collected using a pre-tested questionnaire.
RESULTS: Overall, 324 (53.6%) of the samples were positive for Entamoeba cysts and/or trophozoites by microscopic examination. Molecular analysis revealed that 20.2%, 15.7% and 18.2% of the samples were positive for E. histolytica, E. dispar and E. moshkovskii, respectively. Multivariate analysis showed different sets of species-specific risk factors among these communities. Educational level was identified as the significant risk factor for E. histolytica; age and gender were the significant risk factors for E. moshkovskii; and sources of drinking water and consumption of unwashed vegetables were the significant risk factors for E. dispar. Moreover, living in coastal/foothill areas and presence of other infected family members were risk factors for both E. histolytica and E. moshkovskii infections.
CONCLUSION: The study reveals that Entamoeba spp. infection is highly prevalent among rural communities in Yemen, with E. histolytica, E. dispar and E. moshkovskii differentiated for the first time. Identifying and treating infected family members, providing health education pertinent to good personal and food hygiene practices and providing clean drinking water should be considered in developing a strategy to control intestinal parasitic infections in these communities, particularly in the coastal/foothill areas of the country.
METHODS: Recombinant PPDK (rPPDK) was expressed, purified and evaluated by Western blot. In parallel, recombinant galactose-and-N-acetyl-D-galactosamine inhibitable lectin (Gal/GalNAc lectin) was produced and tested similarly. The protein identity was confirmed by analysis using MALDI-TOF/TOF. A lateral flow dipstick (LFD) test using rPPDK was subsequently developed (rPPDK-LFD) and evaluated for serodiagnosis of ALA.
RESULTS: rPPDK was expressed as soluble protein after 4 hours of induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30°C. Purification using nickel-nitrilotriacetic acid (Ni-NTA) resin yielded 1.5 mg of rPPDK from 1 L of culture with estimated molecular mass of 98 kDa on SDS-PAGE. Western blots using sera from patients with ALA, healthy individuals and other diseases probed with anti-human IgG4-HRP showed the highest sensitivity (93.3%) and specificity (100%); as compared to blots using IgG and IgG1 as secondary antibodies. Moreover, rPPDK showed better specificity when compared to rGal/GalNAc lectin. In the development of the LFD test, the optimum amount of rPPDK was 0.625 μg per dipstick and the optimum working concentration of colloidal gold conjugated anti-human IgG4 was optical density (OD) 5 (1.7 μg of anti-human IgG4). Evaluation of rPPDK-LFD using ALA patients and controls serum samples showed 87% diagnostic sensitivity and 100% specificity.
CONCLUSION: The developed rPPDK-LFD showed good potential for rapid diagnosis of ALA, and merit further multicentre validation using larger number of serum samples.
RESULTS: A set of SREHP gene specific LAMP primers were designed for the specific detection of Entamoeba histolytica. This set of primers recorded 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. These primers were later modified for conventional PCR, nPCR and qPCR applications. Besides, 3 different post-LAMP analyses including agarose gel electrophoresis, nucleic acid lateral flow immunoassay and calcein-manganese dye techniques were used to compare their limit of detection (LoD). One E. histolytica trophozoite was recorded as the LoD for all the 3 post-LAMP analysis methods when tested with E. histolytica DNA extracted from spiked stool samples. In contrast, none of the PCR method outperformed LAMP as both qPCR and nPCR recorded LoD of 100 trophozoites while the LoD of conventional PCR was 1000 trophozoites.
CONCLUSIONS: The analytical sensitivity comparison among the conventional PCR, nPCR, qPCR and LAMP reveals that the LAMP outperformed the others in terms of LoD and amplification time. Hence, LAMP is a relevant alternative DNA-based amplification platform for sensitive and specific detection of pathogens.