Displaying publications 21 - 40 of 1017 in total

Abstract:
Sort:
  1. Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF, et al.
    Lancet, 2015 Nov 14;386(10007):1973-2028.
    PMID: 26188744 DOI: 10.1016/S0140-6736(15)60901-1
    Matched MeSH terms: Ecosystem*
  2. Pradisty NA, Amir AA, Zimmer M
    Oecologia, 2021 Apr;195(4):843-858.
    PMID: 33559746 DOI: 10.1007/s00442-021-04865-3
    Leaf litter and its breakdown products represent an important input of organic matter and nutrients to mangrove sediments and adjacent coastal ecosystems. It is commonly assumed that old-grown stands with mature trees contribute more to the permanent sediment organic matter pool than younger stands. However, neither are interspecific differences in leaf decay rates taken into account in this assumption nor is our understanding of the underlying mechanisms or drivers of differences in leaf chemistry sufficient. This study examines the influence of different plant species and ontogenetic stage on the microbial decay of mangrove leaf litter. A litterbag experiment was conducted in the Matang Mangrove Forest Reserve, Malaysia, to monitor leaf litter mass loss, and changes in leaf litter chemistry and microbial enzyme activity. Four mangrove species of different morphologies were selected, namely the trees Rhizophora apiculata and Bruguiera parviflora, the fern Acrostichum aureum and the shrub Acanthus ilicifolius. Decay rates of mangrove leaf litter decreased from A. ilicifolius to R. apiculata to B. parviflora to A. aureum. Leaf litter mass, total phenolic content, protein precipitation capacity and phenol oxidase activity were found to decline rapidly during the early stage of decay. Leaf litter from immature plants differed from that of mature plants in total phenolic content, phenolic signature, protein precipitating capacity and protease activity. For R. apiculata, but not of the other species, leaf litter from immature plants decayed faster than the litter of mature plants. The findings of this study advance our understanding of the organic matter dynamics in mangrove stands of different compositions and ages and will, thus, prove useful in mangrove forest management.
    Matched MeSH terms: Ecosystem*
  3. Azis MN, Abas A
    Environ Monit Assess, 2021 Jun 08;193(7):394.
    PMID: 34101049 DOI: 10.1007/s10661-021-09196-7
    The determinant factors for macroinvertebrate assemblages in river ecosystems are varied and are unique and specific to the type of macroinvertebrate family. This study aims to assess the determinant factors for macroinvertebrate assemblages in a recreational river. The study was conducted on the Ulu Bendul River, Negeri Sembilan, Malaysia. A total of ten sampling stations were selected. The research methodology included (1) water quality measurement, (2) habitat characterization, and (3) macroinvertebrate identification and distribution analysis. The statistical analysis used in this study was canonical correspondence analysis (CCA) to represent the relationship between the environmental factors and macroinvertebrate assemblages in the recreational river. This study found that most of the families of macroinvertebrates were very dependent on the temperature, DO, NH3-N, type of riverbed, etc. All of these factors are important for the survival of the particular type of macroinvertebrate, plus they are also important for selecting egg-laying areas and providing suitable conditions for the larvae to grow. This study advises that improved landscape design for watershed management be implemented in order to enhance water quality and physical habitats, and hence the protection and recovery of the macroinvertebrate biodiversity.
    Matched MeSH terms: Ecosystem*
  4. Dash B, Rout SS, Lovaraju A, Charan Kumar B, Bharati A, Ganesh T, et al.
    Mar Pollut Bull, 2021 Oct;171:112775.
    PMID: 34375747 DOI: 10.1016/j.marpolbul.2021.112775
    The present study examines historical perspectives of the macrobenthic community in response to different phases of anthropogenic perturbations in Kakinada Bay, a tropical embayment on the east coast of India. Multivariate analysis of the snapshot data (1958-2017) revealed considerable changes in the Bay environment following a breakwater construction across the Bay mouth in 1997. Subsequently, port expansion activities, industrialization, urbanization, and geomorphic alterations in the Godavari delta brought deterrent changes in the Bay. The fluctuations over the years in hydrographical and sediment characteristics increased environmental heterogeneity and caused significant spatio-temporal shifts in the macrobenthic community between 1995-1996 and 2016-2017. The observed variabilities were suggestive of anthropogenic perturbations of the system with future repercussions on Bay ecosystem functioning. Overall, this study provides evidence on the long-term impact of anthropogenic activities on coastal marine communities and stresses the importance of macrobenthos as bioindicators of such changes in tropical systems.
    Matched MeSH terms: Ecosystem*
  5. Ng CK, Ooi PA, Wong WL, Khoo G
    J Environ Manage, 2020 Feb 01;255:109829.
    PMID: 31783208 DOI: 10.1016/j.jenvman.2019.109829
    Anthropogenic pressures are causing substantial degradation to the freshwater ecosystems globally and Malaysia has not escaped such a bleak scenario. Prompted by the predicament, this study's objective was to pioneer a river assessment system that can be readily adopted to monitor, manage and drive improvement in a wholesome manner. Three sets of a priori metrics were selected to form the Ichthyofaunal Quality Index (IQI: biological), Water Quality Index (WQI: chemical) and River Physical Quality Index (RPQI: physical). These indices were further integrated on equal weighting to construct a novel Malaysian River Integrity Index (MyRII). To test its robustness, the MyRII protocol was field tested in four eco-hydrological zones located in the Kampar River water basin for 18 months to reveal its strengths, weaknesses, and establish the "excellent", "good", "average", "poor" and "impaired" thresholds based on the "best performer" reference site in an empirical manner. The resultant MyRII showed a clear trend that corresponded with different levels of river impairment. Test site zone A which was a reference site with minimal disturbance achieved the highest MyRII (88.95 ± 4.29), followed by partially disturbed zone B (61.95 ± 5.90) and heavily disturbed zone C (50.00 ± 4.29). However, the MyRII in zone D (59.9 ± 6.39), which was a heavily disturbed wetland that was disjointed from the river, did not conform to such trend. Also unveiled and recognized, however, are some unexpected nuances, limitations and challenges that emerged from this study. These are critically discussed as precautions when interpreting and implementing the MyRII protocol. This study adds to the mounting body of evidence that water resource stakeholders and policymakers must look at the big picture and adopt the "balanced ecosystem" mind-set when assessing, restoring and managing the rivers as a freshwater resource.
    Matched MeSH terms: Ecosystem*
  6. Rajpar MN, Rajpar AH, Zakaria M
    Braz J Biol, 2022;84:e256160.
    PMID: 35137773 DOI: 10.1590/1519-6984.256160
    Riverine forests are unique and highly significant ecosystems that are globally important for diverse and threatened avian species. Apart from being a cradle of life, it also serves as a gene pool that harbors a variety of flora and fauna species (repeated below). Despite the fact, this fragile ecosystem harbored avian assemblages; it is now disappearing daily as a result of human activity. Determining habitat productivity using bird species is critical for conservation and better management in the future. Multiple surveys were conducted over a 15-month period, from January to March 2019, using the distance sampling point count method. A total of 250 point count stations were fixed systematically at 300 m intervals. In total, 9929 bird individuals were recorded, representing 57 species and 34 families. Out of 57 bird species, two were vulnerable, one was data deficient, one was nearly threatened, and the remaining 53 species were of least concern. The Eurasian Collard Dove - Streptopelia decaocto (14.641 ± 2.532/ha), White-eared Bulbul - Pycnonotus leucotis (13.398 ± 4.342/ha) and Common Babbler - Turdoides caudata (10.244 ± 2.345/ha) were the three first plenteous species having higher densities. However, the densities of three species, i.e., Lesser Whitethroat - Sylvia curruca, Gray Heron - Ardea cinerea and Pallas Fish Eagle - Haliaeetus leucoryphus, were not analyzed due to the small sample size. The findings of diversity indices revealed that riverine forest has harbored the diverse avian species that are uniformly dispersed across the forest. Moreover, recording the ten foraging guilds indicated that riverine forest is rich in food resources. In addition, the floristic structure importance value index results indicated that riverine forest is diverse and rich in flora, i.e. trees, shrubs, weeds and grass, making it an attractive and productive habitat for bird species.
    Matched MeSH terms: Ecosystem*
  7. Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T
    Sci Total Environ, 2023 Jan 20;857(Pt 2):159278.
    PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278
    Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
    Matched MeSH terms: Ecosystem*
  8. Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132559.
    PMID: 34655643 DOI: 10.1016/j.chemosphere.2021.132559
    Global production of shellfish aquaculture is steadily increasing owing to the growing market demands for shellfish. The intensification of shellfish aquaculture to maximize production rate has led to increased generation of aquaculture waste streams, particularly the effluents and shellfish wastes. If not effectively managed, these wastes could pose serious threats to human health and the ecosystem while compromising the overall sustainability of the industry. The present work comprehensively reviews the source, composition, and environmental implications of shellfish wastes and aquaculture wastewater. Moreover, recent advancements in the valorization of shellfish wastes into value-added biochar via emerging thermochemical and modification techniques are scrutinized. The utilization of the produced biochar in removing emerging pollutants from aquaculture wastewater is also discussed. It was revealed that shellfish waste-derived biochar exhibits relatively higher adsorption capacities (300-1500 mg/g) compared to lignocellulose biochar (<200 mg/g). The shellfish waste-derived biochar can be effectively employed for the removal of various contaminants such as antibiotics, heavy metals, and excessive nutrients from aquaculture wastewater. Finally, future research priorities and challenges faced to improve the sustainability of the shellfish aquaculture industry to effectively support global food security are elaborated. This review envisages that future studies should focus on the biorefinery concept to extract more useful compounds (e.g., carotenoid, chitin) from shellfish wastes for promoting environmental-friendly aquaculture.
    Matched MeSH terms: Ecosystem*
  9. Azwar E, Chan DJC, Kasan NA, Rastegari H, Yang Y, Sonne C, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127329.
    PMID: 34601414 DOI: 10.1016/j.jhazmat.2021.127329
    Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.
    Matched MeSH terms: Ecosystem*
  10. Chee SY, Tan ML, Tew YL, Sim YK, Yee JC, Chong AKM
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159889.
    PMID: 36328260 DOI: 10.1016/j.scitotenv.2022.159889
    Cities all over the world are edging further into the ocean. Coastal reclamation is a global conservation issue with implications for ocean life, ecosystems, and human well-being. Using Malaysia as a case study, the coastal reclamation trends over three decades (1991-2021) were mapped using Landsat images and Normalized Difference Water Index (NDWI) via the Google Earth Engine platform. The changes in drivers and impacts of these coastal expansions throughout the decades were also reviewed. Twelve out of the 14 states in Malaysia had planned, active, or completed reclamations on their shorelines. Between 1991 and 2021, an absolute area of 82.64 km2 has been or will be reclaimed should all the projects be completed. The most reported driver for coastal expansion in Malaysia is for development and modernization (41 %), followed by rise in human population (20 %), monetary gains from the development of prime land (15 %), and agriculture and aquaculture activities (9 %). Drivers such as reduction of construction costs, financial advantage of prime land, oil and gas, advancement of technology, and tourism (Malaysia My Second Home (MM2H)) had only started occurring within the last decade, while others have been documented since the 1990's. Pollution is the most reported impact (24 %) followed by disruption of livelihoods, sources of income and human well-being (21 %), destruction of natural habitats (17 %), decrease in biodiversity (11 %), changes in landscapes (10 %), erosion / accretion (8 %), threat to tourism industry (6 %), and exposure to wave surges (3 %). Of these, changes in landscape, shoreline alignment, seabed contour, and coastal groundwater, as well as wave surges had only started to surface as impacts in the last two decades. Efforts to protect existing natural coastal and marine ecosystems, restore degraded ones, and fund endeavours that emphasize nature is needed to support sustainable development goals for the benefit of future generations.
    Matched MeSH terms: Ecosystem*
  11. Islam MS, Phoungthong K, Islam ARMT, Ali MM, Ismail Z, Shahid S, et al.
    Mar Pollut Bull, 2022 Dec;185(Pt B):114362.
    PMID: 36410195 DOI: 10.1016/j.marpolbul.2022.114362
    Marine debris is often detected everywhere in the oceans after it enters the marine ecosystems from various sources. Marine litter pollution is a major threat to the marine ecosystem in Bangladesh. A preliminary study was conducted to identify the sources of marine litter (plastics, foamed plastic, clothes, glass, ceramic, metals, paper, and cardboard) along the Bay of Bengal coast. From the observations, the range of abundance of the collected marine litter was 0.14-0.58 items/m2. From the ten sampling sites, the highest amount of marine litter was observed for aluminium cans (3500), followed by plastic bottles (3200). The spatial distribution pattern indicated that all the study areas had beach litter of all types of materials. The present investigation showed that plastics were the dominating pollutants in the marine ecosystem in Bangladesh. The clean-coast index (CCI) value indicated that the Cox's Bazar coast was clean to dirty class. The abundance, distribution, and pollution of marine litter along the coastal belts pose a potential threat to the entire ecosystem. This study will help come up with ways to manage and get rid of marine litter along the coast in an effective way.
    Matched MeSH terms: Ecosystem*
  12. Wei L, Bee MY, Poh SC, Garg A, Lin F, Gao J
    Environ Monit Assess, 2022 Dec 27;195(1):231.
    PMID: 36572829 DOI: 10.1007/s10661-022-10822-1
    The marine aquaculture industry has caused a suite of adverse environmental consequences, including offshore eutrophication. However, little is known about the extent to which aquaculture effluents affect nearby wetland ecosystems. We carried out a field experiment in a mangrove stand located between two effluent-receiving creeks to estimate the extent to which marine aquaculture affects the soil nutrient distribution and plant nutrient status of adjacent mangroves. Carbon (C), nitrogen (N), and phosphorus (P) contents and C isotopic signatures were determined seasonally in creeks, pore water, surface soils, and in the leaves of the dominant mangrove species Kandelia obovata. The creeks exhibited nutrient enrichment (2.44 mg N L-1 and 0.09 mg P L-1 on average). The soils had N (from 1.40 to 2.70 g kg-1) and P (from 0.58 to 2.76 g kg-1) much greater than those of pristine mangrove forests. Combined analyses of the N:P ratio, nutrient resorption efficiency, and proficiency indicated that soil P met plant demands, but plants in most plots showed N limitation, suggesting that soil nutrient accumulation did not fundamentally impact the plant nutrient status. Collectively, this case study shows that marine aquaculture farms can affect adjacent mangrove stands even though their effluents are not directly discharged into the mangrove stands, but mangrove forests may have substantial buffering capabilities for long-term nutrient loading.
    Matched MeSH terms: Ecosystem*
  13. Culaba AB, Mayol AP, San Juan JLG, Ubando AT, Bandala AA, Concepcion Ii RS, et al.
    Bioresour Technol, 2023 Feb;369:128256.
    PMID: 36343780 DOI: 10.1016/j.biortech.2022.128256
    The increase in worldwide demand for energy is driven by the rapid increase in population and exponential economic development. This resulted in the fast depletion of fossil fuel supplies and unprecedented levels of greenhouse gas in the atmosphere. To valorize biomass into different bioproducts, one of the popular and carbon-neutral alternatives is biorefineries. This system is an appropriate technology in the circular economy model. Various research highlighted the role of biorefineries as a centerpiece in the carbon-neutral ecosystem of technologies of the circular economy model. To fully realize this, various improvements and challenges need to be addressed. This paper presents a critical and timely review of the challenges and future direction of biorefineries as an alternative carbon-neutral energy source.
    Matched MeSH terms: Ecosystem*
  14. Adie H, Lawes MJ
    Biol Rev Camb Philos Soc, 2023 Apr;98(2):643-661.
    PMID: 36444419 DOI: 10.1111/brv.12923
    Tree species of Eurasian broadleaved forest possess two divergent trait syndromes with contrasting patterns of resource allocation adapted to different selection environments: short-stature basal resprouters that divert resources to a bud bank adapted to frequent and severe disturbances such as fire and herbivory, and tall trees that delay reproduction by investing in rapid height growth to escape shading. Drawing on theory developed in savanna ecosystems, we propose a conceptual framework showing that the possession of contrasting trait syndromes is essential for the persistence of broadleaved trees in an open ecosystem that burns. Consistent with this hypothesis, trees of modern Eurasian broadleaved forest bear a suite of traits that are adaptive to surface and crown-fire regimes. We contend that limited opportunities in grassland restricts recruitment to disturbance-free refugia, and en masse establishment creates a wooded environment where shade limits the growth of light-demanding savanna plants. Rapid height growth, which involves investment in structural support and the switch from a multi-stemmed to a monopodial growth form, is adaptive in this shaded environment. Although clustering reduces surface fuel loads, these establishment nuclei are vulnerable to high-intensity crown fires. The lethal effects of canopy fire are avoided by seasonal leaf shedding, and aerial resprouting enhances rapid post-fire recovery of photosynthetic capacity. While these woody formations satisfy the structural definition of forest, their constituents are clearly derived from savanna. Contrasting trait syndromes thus represent the shift from consumer to resource regulation in savanna ecosystems. Consistent with global trends, the diversification of most contemporary broadleaved taxa coincided with the spread of grasslands, a surge in fire activity and a decline in wooded ecosystems in the late Miocene-Pliocene. Recognition that Eurasian broadleaved forest has savanna origins and persists as an alternative state with adjacent grassy ecosystems has far-reaching management implications in accordance with functional rather than structural criteria. Shade is a severe constraint to the regeneration and growth of both woody and herbaceous growth forms in consumer-regulated ecosystems. However, these ecosystems are highly resilient to disturbance, an essential process that maintains diversity especially among the species-rich herbaceous component that is vulnerable to shading when consumer behaviour is altered.
    Matched MeSH terms: Ecosystem*
  15. Ord TJ, Diesmos A, Ahmad N, Das I
    Evolution, 2023 Mar 01;77(3):660-669.
    PMID: 36626820 DOI: 10.1093/evolut/qpac057
    We identified hypotheses for the cause and consequences of the loss of complexity in animal signals and tested these using a genus of visually communicating lizards, the Southeast Asian Draco lizards. Males of some species have lost the headbob component from their display, which is otherwise central to the communication of this genus. These males instead display a large, colorful dewlap to defend territories and attract mates. This dewlap initially evolved to augment the headbob component of the display, but has become the exclusive system of communication. We tested whether the loss of headbobs was caused by relaxed selection, habitat-dependent constraints, or size-specific energetic constraints on display movement. We then examined whether the consequences of this loss have been mitigated by increased signaling effort or complexity in the color of the dewlap. It appears the increased cost of display movement resulting from the evolution of large body size might have contributed to the loss of headbobs and has been somewhat compensated for by the evolution of greater complexity in dewlap color. However, this evolutionary shift is unlikely to have maintained the complexity previously present in the communication system, resulting in an apparent detrimental loss of information potential.
    Matched MeSH terms: Ecosystem*
  16. Zailan NA, Azizan MM, Hasikin K, Mohd Khairuddin AS, Khairuddin U
    Front Public Health, 2022;10:907280.
    PMID: 36033781 DOI: 10.3389/fpubh.2022.907280
    Due to urbanization, solid waste pollution is an increasing concern for rivers, possibly threatening human health, ecological integrity, and ecosystem services. Riverine management in urban landscapes requires best management practices since the river is a vital component in urban ecological civilization, and it is very imperative to synchronize the connection between urban development and river protection. Thus, the implementation of proper and innovative measures is vital to control garbage pollution in the rivers. A robot that cleans the waste autonomously can be a good solution to manage river pollution efficiently. Identifying and obtaining precise positions of garbage are the most crucial parts of the visual system for a cleaning robot. Computer vision has paved a way for computers to understand and interpret the surrounding objects. The development of an accurate computer vision system is a vital step toward a robotic platform since this is the front-end observation system before consequent manipulation and grasping systems. The scope of this work is to acquire visual information about floating garbage on the river, which is vital in building a robotic platform for river cleaning robots. In this paper, an automated detection system based on the improved You Only Look Once (YOLO) model is developed to detect floating garbage under various conditions, such as fluctuating illumination, complex background, and occlusion. The proposed object detection model has been shown to promote rapid convergence which improves the training time duration. In addition, the proposed object detection model has been shown to improve detection accuracy by strengthening the non-linear feature extraction process. The results showed that the proposed model achieved a mean average precision (mAP) value of 89%. Hence, the proposed model is considered feasible for identifying five classes of garbage, such as plastic bottles, aluminum cans, plastic bags, styrofoam, and plastic containers.
    Matched MeSH terms: Ecosystem*
  17. Jackson-Morris A, Sembajwe R, Mustapha FI, Chandran A, Niyonsenga SP, Gishoma C, et al.
    Glob Health Action, 2023 Dec 31;16(1):2157542.
    PMID: 36692486 DOI: 10.1080/16549716.2022.2157542
    BACKGROUND: In 2019, the World Health Organization recognised diabetes as a clinically and pathophysiologically heterogeneous set of related diseases. Little is currently known about the diabetes phenotypes in the population of low- and middle-income countries (LMICs), yet identifying their different risks and aetiology has great potential to guide the development of more effective, tailored prevention and treatment.

    OBJECTIVES: This study reviewed the scope of diabetes datasets, health information ecosystems, and human resource capacity in four countries to assess whether a diabetes phenotyping algorithm (developed under a companion study) could be successfully applied.

    METHODS: The capacity assessment was undertaken with four countries: Trinidad, Malaysia, Kenya, and Rwanda. Diabetes programme staff completed a checklist of available diabetes data variables and then participated in semi-structured interviews about Health Information System (HIS) ecosystem conditions, diabetes programme context, and human resource needs. Descriptive analysis was undertaken.

    RESULTS: Only Malaysia collected the full set of the required diabetes data for the diabetes algorithm, although all countries did collect the required diabetes complication data. An HIS ecosystem existed in all settings, with variations in data hosting and sharing. All countries had access to HIS or ICT support, and epidemiologists or biostatisticians to support dataset preparation and algorithm application.

    CONCLUSIONS: Malaysia was found to be most ready to apply the phenotyping algorithm. A fundamental impediment in the other settings was the absence of several core diabetes data variables. Additionally, if countries digitise diabetes data collection and centralise diabetes data hosting, this will simplify dataset preparation for algorithm application. These issues reflect common LMIC health systems' weaknesses in relation to diabetes care, and specifically highlight the importance of investment in improving diabetes data, which can guide population-tailored prevention and management approaches.

    Matched MeSH terms: Ecosystem*
  18. Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, et al.
    Chemosphere, 2023 Mar;318:137924.
    PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924
    Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
    Matched MeSH terms: Ecosystem*
  19. Tan YL, Yiew TH, Habibullah MS, Chen JE, Mat Kamal SN, Saud NA
    Environ Sci Pollut Res Int, 2023 Jan;30(2):2754-2770.
    PMID: 35941500 DOI: 10.1007/s11356-022-22211-9
    Although increased attempts to preserve biodiversity ecosystems have been widely publicized, bibliometric research of biodiversity loss remains limited. Using VOSviewer, we hope to provide a bibliometric assessment of global research trends on biodiversity loss from 1990 to 2021. Document type, language, publication trend, countries, institutions, Author Keywords, and Keywords Plus were all examined. This study recorded a total of 6599 publications from the Web of Science Core Collection database. According to the findings, biodiversity loss research is expected to rise dramatically in the near future. However, the role of social sciences and economics in biodiversity loss studies has received little attention. The USA made the most significant contribution in this field. Biological Conservation was the most productive journal, and Proceedings of the National Academy of Sciences of the United States of America was the most influential journal in biodiversity loss literature. Eisenhauer, N was the most prolific author, and Collen, B was the most referenced. Biodiversity, biodiversity loss mechanisms, biodiversity loss drivers, conservation, and climate change have been the topic of previous research. Possible future research hotspots may include species diversity and many elements of biodiversity. Lastly, the outcomes of this study suggest that existing socio-economic concerns can be integrated into decision-making processes to improve biodiversity conservation.
    Matched MeSH terms: Ecosystem*
  20. Alkhadher SAA, Suratman S, Zakaria MP
    Environ Monit Assess, 2023 May 24;195(6):720.
    PMID: 37222826 DOI: 10.1007/s10661-023-11310-w
    One of the molecular chemical markers used to identify anthropogenic inputs is linear alkylbenzenes (LABs) that cause serious impacts in the bays and coastal ecosystems. The surface sediments samples collected from the East Malaysia, including Brunei bay to estimate the LABs concentration and distribution as molecular markers of anthropogenic indicators. Gas chromatography-mass spectrometry (GC-MS) was used after purification, fractionation the hydrocarbons in the sediment samples to identify the sources of LABs. The analysis of variance (ANOVA) and Pearson correlation coefficient were applied to analyze the difference between sampling stations' significance at p 
    Matched MeSH terms: Ecosystem*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links