Displaying publications 21 - 40 of 120 in total

Abstract:
Sort:
  1. Hassan Y, Awaisu A, Aziz NA, Ismail O
    Pharm World Sci, 2005 Feb;27(1):16-9.
    PMID: 15861930
    Phenytoin has been reported to have major interactions with warfarin. Phenytoin induces warfarin's metabolism. However, there are many case reports which provide conflicting conclusions. Here, we report a case of a 65-year-old man with mechanical heart valve on chronic warfarin therapy who experienced persistent fluctuations of INR and bleeding secondary to probable warfarin-phenytoin interactions. The patient's anticoagulation clinic visits prior to hospitalization were thoroughly evaluated and we continued to follow-up the case for 3 months post-hospitalization. The reported interaction could be reasonably explained from the chronology of events and the pattern of INR fluctuations whenever phenytoin was either added or discontinued from his drug regimen.
    Matched MeSH terms: Drug Synergism
  2. Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M
    Sensors (Basel), 2015;15(10):24681-97.
    PMID: 26404269 DOI: 10.3390/s151024681
    Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM(-1)), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
    Matched MeSH terms: Drug Synergism
  3. Akbar A, Sharma JN, Yusof AP, Gan EK
    Int J Tissue React, 1998;20(3):95-100.
    PMID: 9894182
    We studied the effect of indomethacin, a cyclooxygenase inhibitor, on bradykinin-induced responses in the intact and denuded epithelium of the isolated tracheal smooth muscle in guinea pigs. Epithelium removal alone did not alter the responsiveness to bradykinin. Indomethacin (2.8 microM) enhanced the sensitivity to bradykinin of both intact and denuded preparations. This finding suggests that the tracheal epithelial may have no protective effect on the contractile responses induced by bradykinin. This may be due to the presence of high amounts of bradykinin-inactivating enzymes in the tracheal smooth muscle. Indomethacin-medicated potentiation caused by bradykinin in epithelium intact and denuded preparations may be an indication of removal of the bronchodilator prostaglandin biosynthesis. The significance of these findings is discussed.
    Matched MeSH terms: Drug Synergism
  4. Cercek B, Lew AS, Hod H, Yano J, Lewis B, Reddy KN, et al.
    Thromb Res, 1987 Aug 15;47(4):417-26.
    PMID: 3660351
    Since thrombi continue to incorporate fibrin during lysis we tested the effect of pretreatment with ancrod, a defibrinating agent from Malaysian pit viper venom, on thrombolysis with urokinase and streptokinase. Thrombi were induced by copper-coils in the carotid arteries of the dogs, weighed after 1 hour and inserted into the femoral arteries of the same animals. They were then exposed for 15 min to iv boluses of streptokinase 10,000 U/kg, urokinase 10,000 U/kg and urokinase 25,000 U/kg with or without pretreatment with ancrod. Ancrod depleted fibrinogen within 5 min and enhanced the lytic effect of streptokinase from 25 +/- 8% to 59 +/- 13% (p less than .05), urokinase 10,000 U/kg from 16 +/- 11% to 66 +/- 18% (p less than .01) and urokinase 25,000 U/kg from 27 +/- 17% to 85 +/- 8% (p less than .001) of the initial thrombus weight. Ancrod itself did not activate plasminogen to plasmin. We conclude that ancrod enhances thrombolysis probably by depleting fibrinogen and preventing new fibrin incorporation into the thrombus during lysis.
    Matched MeSH terms: Drug Synergism
  5. Sim SM, Hoggard PG, Sales SD, Phiboonbanakit D, Hart CA, Back DJ
    AIDS Res Hum Retroviruses, 1998 Dec 20;14(18):1661-7.
    PMID: 9870320
    Zidovudine (ZDV) is converted to its active triphosphate (ZDVTP) by intracellular kinases. The intermediate ZDV monophosphate (ZDVMP) is believed to play a major role in ZDV toxicity. Manipulation of ZDV phosphorylation is a possible therapeutic strategy for altering the risk-benefit ratio. Here we investigate whether combining RBV with ZDV is able to modulate efficacy and toxicity of ZDV. We have measured the intracellular activation of ZDV (0.3 microM) in the absence and presence of ribavirin (RBV; 2 and 20 microM) in Molt 4 and U937 cells. MTT cytotoxicity of ZDV (10-1000 microM) was also measured with and without RBV (2 microM) in Molt 4 and U937 cells. Measurement of endogenous deoxythymidine triphosphate (dTTP) allowed investigation of the dTTP/ZDVTP ratio. The antiviral efficacy of ZDV in combination with RBV (2 microM) was assessed by HIV p24 antigen measurements. In the presence of RBV (2 and 20 microM) a decrease in total ZDV phosphates was observed, owing mainly to an effect primarily on ZDVMP rather than the active ZDVTP. RBV also increased endogenous dTTP pools in both cell types, resulting in an increase in the dTTP/ZDVTP ratio. ZDV alone significantly reduced p24 antigen production, with an IC50 of 0.34 microM. Addition of RBV increased the IC50 approximately fivefold (1.52 microM). However, at higher concentrations of ZDV (10 and 100 microM) the antagonistic effect of RBV (2 microM) on ZDV was lost. The RBV-mediated decrease in ZDVMP may explain the reduction in ZDV toxicity when combined with RBV (2 microM). Cytotoxicity of ZDV was reduced in the presence of RBV (2 microM) at all concentrations in both cell lines, probably owing to saturation of ZDVTP formation. The interaction of ZDV and RBV is concentration dependent.
    Matched MeSH terms: Drug Synergism
  6. Ngai SC
    Curr Drug Targets, 2020;21(9):849-854.
    PMID: 32116190 DOI: 10.2174/1389450121666200302124426
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a natural protein expressed in a wide range of tissues in our body. It is a promising anti-cancer agent due to its selective killing of cancer cells, rendering normal cells unharmed. However, resistance occurs either intrinsically or develops over the course of TRAIL treatment. In view of its specificity to cancer cells, there is a pushing need to overcome TRAIL resistance. Curcumin (Cur), a natural active constituent of turmeric, has been evidenced to have anti-cancer properties. However, it is limited by its sparing solubility and low bioavailability. Combinational therapy is one of the most frequently used strategies to overcome these limitations, which has been proved to be more effective than monotherapy by achieving synergistic effects and reducing toxicity. This review aims to discuss TRAIL and its underlying apoptotic mechanisms, the combinational treatment of Cur and TRAIL in view of their respective limitations, and the underlying apoptotic mechanisms activated by the sensitization of cancers by Cur towards TRAIL-induced apoptosis. Finally, this review discusses the research gap and the author's insight into this research area in bridging the research gap from bench to bedside.
    Matched MeSH terms: Drug Synergism
  7. Kirubakari B, Chen Y, Sasidharan S
    PMID: 31113347 DOI: 10.2174/1871523018666190522112902
    BACKGROUND: Polyalthia longifolia is a popular medicinal plant and has been widely used as a traditional remedy for centuries in curing of various ailments. The purpose of this study was conducted to determine the in situ antimicrobial synergistic effects between Polyalthia longifolia leaf ethyl acetate fraction (PLEAF) and ampicillin against MRSA local isolate by using modern microscopy technique.

    METHODS: Hence, the evaluation of the synergistic activity of PLEAF and ampicillin against MRSA local isolate was conducted with scanning electron microscopy (SEM).

    RESULTS: The combinational effect of PLEAF fraction and ampicillin exhibited significant antibacterial activity against MRSA. Bacterial cells observations showed invagination, impaired cell division, extensive wrinkles, cell shrinkage, the appearance of a rougher cell with fibrous matrix and clustered cells which confirmed the synergistic effect of PLEAF and ampicillin against MRSA local isolate by SEM.

    CONCLUSION: Conclusively, the in situ SEM observation proved the synergistic antimicrobial activity between PLEAF fraction and ampicillin to destroy the MRSA resistance bacteria which is an important aspect of PLEAF fraction to be used in the future combinational therapy.

    Matched MeSH terms: Drug Synergism
  8. Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, et al.
    Fitoterapia, 2016 Jul;112:116-31.
    PMID: 27259370 DOI: 10.1016/j.fitote.2016.05.016
    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal.
    Matched MeSH terms: Drug Synergism
  9. Chai RY, Lee CY
    J Econ Entomol, 2010 Apr;103(2):460-71.
    PMID: 20429463
    The resistance profiles of 22 field-collected populations of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae), from various localities in Singapore were determined by topical bioassay against novel and conventional insecticides from six classes: (1) pyrethroid (beta-cyfluthrin, deltamethrin), (2) carbamate (propoxur), (3) organophosphate (chlorpyrifos), (4) phenyl pyrazole (fipronil), (5) neonicotinoid (imidacloprid), and (6) oxadiazine (indoxacarb). Compared with a laboratory susceptible strain, resistance levels ranged from 3.0 to 468.0x for the pyrethroids, from 3.9 to 21.5x for the carbamate, from 1.5 to 22.8X for the organophosphate, from 1.0 to 10.0X for phenyl pyrazole, and were absent or low for the neonicotinoid (0.8-3.8x) and the oxadiazine (1.4-5.3x). One strain demonstrated broad-spectrum resistance to most of the insecticides. Synergism studies using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) in combination with a discriminating dose (LD99) of selected insecticides were conducted to test for possible resistance mechanisms. Resistance to pyrethroid was reduced with PBO and DEF, suggesting the involvement of P450 monooxygenase and esterases in conferring resistance. Propoxur resistance also was suppressed with PBO and DEF, and coadministration of both synergists resulted in complete negation of the resistance, indicating the involvement of both P450 monooxygenase and esterase. In six B. germanica field strains evaluated, esterases were found to play a role in chlorpyrifos resistance, whereas the P450 monoxygenase involvement was registered in three strains. Additional resistance mechanisms such as kdr-type and Rdl mutation contributing toward pyrethroid and fipronil resistance, respectively, also may be involved in some strains in which the resistance levels were not affected by the synergists. We conclude that insecticide resistance is prevalent in field German cockroach populations in Singapore.
    Matched MeSH terms: Drug Synergism
  10. Woon LS, Tee CK, Gan LLY, Deang KT, Chan LF
    J Psychiatr Pract, 2018 Mar;24(2):121-124.
    PMID: 29509183 DOI: 10.1097/PRA.0000000000000292
    Leukopenia is a known hematological side effect of atypical antipsychotics. We report a case of an antipsychotic-naive patient with schizophrenia who developed leukopenia after a single dose of olanzapine, which worsened during subsequent treatment with risperidone. Normalization of the white blood cell counts occurred within 24 hours of risperidone discontinuation. Possible synergistic mechanisms underlying olanzapine-induced and risperidone-induced leukopenia are discussed. This case highlights the challenges in identifying and managing nonclozapine antipsychotic-induced leukopenia in a susceptible patient.
    Matched MeSH terms: Drug Synergism
  11. Teow SY, Ali SA
    Pak J Pharm Sci, 2017 Mar;30(2):449-457.
    PMID: 28649069
    Antibacterial effect is one of the major therapeutic activities of plant-derived Curcumin. This work evaluated the effect of serum albumin, human plasma, and whole blood on the in vitro activity of Curcumin against eight clinical bacterial isolates by standard broth microdilution and plate-counting methods. Toxicological effects of Curcumin towards human red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) were also investigated. Curcumin exhibited weak activity against gram-negative bacteria, except Escherichia coli and Shigella flexneri were susceptible and was most active against gram-positive bacteria: Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis. The antibacterial activity was impaired in the presence of bovine serum albumin (BSA), human plasma and whole blood. Curcumin was not toxic to PBMCs and RBCs at 200μg/mL. Furthermore, Curcumin showed synergistic activity in combination with antibiotics: Ciprofloxacin, Gentamicin, Vancomycin and Amikacin against Staphylococcus aureus. This study demonstrated that the interaction of Curcumin with plasma proteins diminishes its in vitro antibacterial activity. Curcumin derivatives with reduced affinity for plasma protein may improve the bioavailability and antibacterial activities.
    Matched MeSH terms: Drug Synergism
  12. Choo S, Chin VK, Wong EH, Madhavan P, Tay ST, Yong PVC, et al.
    Folia Microbiol (Praha), 2020 Jun;65(3):451-465.
    PMID: 32207097 DOI: 10.1007/s12223-020-00786-5
    Garlic (Allium sativum L.) is a well-known spice widely utilised for its medicinal properties. There is an extensive record of the many beneficial health effects of garlic which can be traced back to as early as the ancient Egyptian era. One of the most studied properties of garlic is its ability to cure certain ailments caused by infections. In the 1940s, the antimicrobial activities exhibited by garlic were first reported to be due to allicin, a volatile compound extracted from raw garlic. Since then, allicin has been widely investigated for its putative inhibitory activities against a wide range of microorganisms. Allicin has demonstrated a preference for targeting the thiol-containing proteins and/or enzymes in microorganisms. It has also demonstrated the ability to regulate several genes essential for the virulence of microorganisms. Recently, it was reported that allicin may function better in combination with other antimicrobials compared to when used alone. When used in combination with antibiotics or antifungals, allicin enhanced the antimicrobial activities of these substances and improved the antimicrobial efficacy. Hence, it is likely that combination therapy of allicin with additional antimicrobial drug(s) could serve as a viable alternative for combating rising antimicrobial resistance. This review focuses on the antimicrobial activities exhibited by allicin alone as well as in combination with other substances. The mechanisms of action of allicin elucidated by some of the studies are also highlighted in the present review in order to provide a comprehensive overview of this versatile bioactive compound and the mechanistic evidence supporting its potential use in antimicrobial therapy.
    Matched MeSH terms: Drug Synergism
  13. Butt AM, Mohd Amin MC, Katas H
    Int J Nanomedicine, 2015;10:1321-34.
    PMID: 25709451 DOI: 10.2147/IJN.S78438
    BACKGROUND: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells.

    METHODS: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay.

    RESULTS: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX.

    CONCLUSION: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

    Matched MeSH terms: Drug Synergism
  14. Hadi N, Nakhaeitazreji S, Kakian F, Hashemizadeh Z, Ebrahiminezhad A, Chong JWR, et al.
    Mol Biotechnol, 2024 Dec;66(12):3573-3582.
    PMID: 37957480 DOI: 10.1007/s12033-023-00957-y
    The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index 
    Matched MeSH terms: Drug Synergism
  15. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Drug Synergism*
  16. Yee PS, Zainal NS, Gan CP, Lee BKB, Mun KS, Abraham MT, et al.
    Target Oncol, 2019 04;14(2):223-235.
    PMID: 30806895 DOI: 10.1007/s11523-019-00626-8
    BACKGROUND: Given that aberrant activation of epidermal growth factor receptor family receptors (ErbB) is a common event in oral squamous cell carcinoma, and that high expression of these receptor proteins is often associated with poor prognosis, this rationalizes the approach of targeting ErbB signaling pathways to improve the survival of patients with oral squamous cell carcinoma. However, monotherapy with the ErbB blocker afatinib has shown limited survival benefits.

    OBJECTIVES: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma.

    METHODS: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2'-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models.

    RESULTS: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models.

    CONCLUSIONS: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma.

    Matched MeSH terms: Drug Synergism*
  17. Abubakar IB, Lim KH, Loh HS
    Nat Prod Res, 2015;29(22):2137-40.
    PMID: 25515603 DOI: 10.1080/14786419.2014.991927
    Tocotrienols have been reported to possess anticancer effects other than anti-inflammatory and antioxidant activities. This study explored the potential synergism of antiproliferative effects induced by individual alkaloid extracts of Ficus fistulosa, Ficus hispida and Ficus schwarzii combined with δ- and γ-tocotrienols against human brain glioblastoma (U87MG), lung adenocarcinoma (A549) and colorectal adenocarcinoma (HT-29) cells. Cell viability and morphological results demonstrated that extracts containing a mixture of alkaloids from the leaves and bark of F. schwarzii inhibited the proliferation of HT-29 cells, whereas the alkaloid extracts of F. fistulosa inhibited the proliferation of both U87MG and HT-29 cells and showed synergism in combined treatments with either δ- or γ-tocotrienol resulting in 2.2-34.7 fold of reduction in IC50 values of tocotrienols. The observed apoptotic cell characteristics in conjunction with the synergistic antiproliferative effects of Ficus species-derived alkaloids and tocotrienols assuredly warrant future investigations towards the development of a value-added chemotherapeutic regimen against cancers.
    Matched MeSH terms: Drug Synergism
  18. Rahman AA, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZ
    Molecules, 2014 Sep 12;19(9):14528-41.
    PMID: 25221872 DOI: 10.3390/molecules190914528
    Plant bioactives [6]-gingerol (GING), epigallocatechin gallate (EGCG) and asiaticoside (AS) and vitamin E, such as tocotrienol-rich fraction (TRF), have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) in culture by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI) using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING) were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles.
    Matched MeSH terms: Drug Synergism
  19. Umar MI, Asmawi MZ, Sadikun A, Abdul Majid AM, Atangwho IJ, Khadeer Ahamed MB, et al.
    Pharm Biol, 2014 Nov;52(11):1411-22.
    PMID: 25026347 DOI: 10.3109/13880209.2014.895017
    Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures.
    Matched MeSH terms: Drug Synergism
  20. Yap PS, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SH
    J Appl Microbiol, 2014 May;116(5):1119-28.
    PMID: 24779580 DOI: 10.1111/jam.12444
    The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin.
    Matched MeSH terms: Drug Synergism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links