Displaying publications 21 - 40 of 250 in total

Abstract:
Sort:
  1. Sharma JN, Uma K, Yusof AP
    Int J Cardiol, 1998 Feb 28;63(3):229-35.
    PMID: 9578349 DOI: 10.1016/s0167-5273(97)00329-x
    We investigated the cardiac tissue kallikrein and kininogen levels, left ventricular wall thickness and mean arterial blood pressure of Wistar Kyoto and spontaneously hypertensive rats with and without streptozotocin-induced diabetes. The mean arterial blood pressure was highly elevated (P<0.001) in Wistar Kyoto diabetic and spontaneously hypertensive diabetic rats as compared with their respective controls. The cardiac tissue kallikrein and kininogen levels were reduced significantly (P<0.001) in diabetic Wistar Kyoto, spontaneously hypertensive and diabetic spontaneously hypertensive compared with Wistar Kyoto control rats. In addition, the left ventricular thickness was found to be increased (P<0.001) in diabetic Wistar Kyoto and spontaneously hypertensive rats in the presence and in the absence of diabetes. Our results indicate that reduced activity of the kinin-forming system may be responsible for inducing left ventricular hypertrophy in the presence of raised mean arterial blood pressure in diabetic and hypertensive rats. Thus, the kinin-forming components might have a protective role against the development of left ventricular hypertrophy. The possible significance of these findings is discussed.
    Matched MeSH terms: Diabetes Mellitus, Experimental/complications; Diabetes Mellitus, Experimental/physiopathology*
  2. Yeap SK, Mohd Ali N, Mohd Yusof H, Alitheen NB, Beh BK, Ho WY, et al.
    J Biomed Biotechnol, 2012;2012:285430.
    PMID: 23091343 DOI: 10.1155/2012/285430
    Mung bean was reported as a potential antidiabetic agent while fermented food has been proposed as one of the major contributors that can reduce the risk of diabetes in Asian populations. In this study, we have compared the normoglycemic effect, glucose-induced hyperglycemic effect, and alloxan-induced hyperglycemic effect of fermented and nonfermented mung bean extracts. Our results showed that fermented mung bean extracts did not induce hypoglycemic effect on normal mice but significantly reduced the blood sugar levels of glucose- and alloxan-induced hyperglycemic mice. The serum levels of cholesterol, triglyceride (TG), and low-density lipoprotein (LDL) were also lowered while insulin secretion and antioxidant level as measured by malonaldehyde (MDA) assays were significantly improved in the plasma of the fermented mung bean-treated group in alloxan-induced hyperglycemic mouse. These results indicated that fermentation using Mardi Rhizopus sp. strain 5351 inoculums could enhance the antihyperglycemic and the antioxidant effects of mung bean in alloxan-treated mice. The improvement in the antihyperglycemic effect may also be contributed by the increased content of GABA and the free amino acid that are present in the fermented mung bean extracts.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*
  3. Abas R, Othman F, Thent ZC
    Oxid Med Cell Longev, 2014;2014:429060.
    PMID: 25371774 DOI: 10.1155/2014/429060
    In diabetes mellitus, cardiac fibrosis is characterized by increase in the deposition of collagen fibers. The present study aimed to observe the effect of Momordica charantia (MC) fruit extract on hyperglycaemia-induced cardiac fibrosis. Diabetes was induced in the male Sprague-Dawley rats with a single intravenous injection of streptozotocin (STZ). Following 4 weeks of STZ induction, the rats were subdivided (n = 6) into control group (Ctrl), control group treated with MC (Ctrl-MC), diabetic untreated group (DM-Ctrl), diabetic group treated with MC (DM-MC), and diabetic group treated with 150 mg/kg of metformin (DM-Met). Administration of MC fruit extract (1.5 g/kg body weight) in diabetic rats for 28 days showed significant increase in the body weight and decrease in the fasting blood glucose level. Significant increase in cardiac tissues superoxide dismutase (SOD), glutathione contents (GSH), and catalase (CAT) was observed following MC treatment. Hydroxyproline content was significantly reduced and associated morphological damages reverted to normal. The decreased expression of type III and type IV collagens was observed under immunohistochemical staining. It is concluded that MC fruit extract possesses antihyperglycemic, antioxidative, and cardioprotective properties which may be beneficial in the treatment of diabetic cardiac fibrosis.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/drug therapy; Diabetes Mellitus, Experimental/pathology*
  4. Mojani MS, Sarmadi VH, Vellasamy S, Sandrasaigaran P, Rahmat A, Peng LS, et al.
    Cell Immunol, 2014 May-Jun;289(1-2):145-9.
    PMID: 24791700 DOI: 10.1016/j.cellimm.2014.04.004
    Type 2 diabetes is a chronic disease with growing public health concern globally. Finding remedies to assist this health issue requires recruiting appropriate animal model for experimental studies. This study was designated to evaluate metabolic and immunologic changes in streptozotocin-nicotinamide induced diabetic rats as a model of type 2 diabetes. Male rats were induced diabetes using nicotinamide (110 mg/kg) and streptozotocin (65 mg/kg). Following 42 days, biochemical and immunological tests showed that diabetic rats had higher levels of blood glucose, WBC, certain abnormalities in lipid profile and insufficient mitogenic responses of lymphocytes (p<0.05). However, the status of the total antioxidant, inflammatory biomarkers and other parameters of full blood count (except HCT) were not significantly altered. Phenotyping assay indicated insignificant lymphocyte subtype imbalances excluding a significant rise in the level of CD4+CD25+ marker (p<0.05). This model of diabetic animals may represent some but not all symptoms of human type 2 diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/immunology*; Diabetes Mellitus, Experimental/metabolism*
  5. Teoh SL, Latiff AA, Das S
    Clin Exp Dermatol, 2009 Oct;34(7):815-22.
    PMID: 19508570 DOI: 10.1111/j.1365-2230.2008.03117.x
    Momordica charantia (MC; bitter gourd) is a traditional herb commonly used for its antidiabetic, antioxidant, contraceptive and antibacterial properties. It is also used for the rapid healing of wounds.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism; Diabetes Mellitus, Experimental/pathology; Diabetes Mellitus, Experimental/physiopathology*
  6. Eleazu C, Ekeleme CE, Famurewa A, Mohamed M, Akunna G, David E, et al.
    PMID: 30659555 DOI: 10.2174/1871530319666190119101058
    BACKGROUND: Research studies that holistically investigated the effect of administration of Virgin Coconut Oil (VCO) on diabetic humans or animals are limited in literature.

    OBJECTIVE: To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats.

    METHODS: Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO.

    RESULTS: There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control.

    CONCLUSION: The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/blood*; Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*
  7. Lee WC, Mokhtar SS, Munisamy S, Yahaya S, Rasool AHG
    Cell Mol Biol (Noisy-le-grand), 2018 May 30;64(7):60-69.
    PMID: 29974854
    Diabetes mellitus is an epidemic that is gaining global concern. Chronic hyperglycemia in diabetes induces the excess production of free radicals. The deleterious effects of excess free radicals are encountered by endogenous antioxidant defense system. Imbalance between free radicals production and antioxidants defense mechanisms leads to a condition known as "oxidative stress". Diabetes mellitus is associated with augmented oxidative stress that induced micro- and macrovascular complications, which presents a significant risk for cardiovascular events. Low vitamin D levels in the body have also been reported to be associated with the pathogenesis of diabetes and enhanced oxidative stress. The article is to review available literature and summarize the relationship between oxidative stress and vitamin D levels in diabetes. We also review the effects of vitamin D analogs supplementation in improving oxidative stress in diabetics.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/drug therapy; Diabetes Mellitus, Experimental/metabolism
  8. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Abdullah GZ, et al.
    Neurourol Urodyn, 2011 Mar;30(3):438-46.
    PMID: 21284025 DOI: 10.1002/nau.21007
    We assessed the role of renal sympathetic nervous system in the deterioration of renal hemodynamic and excretory functions in rats with streptozotocin (STZ)-induced diabetic kidney disease (DKD).
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/complications*; Diabetes Mellitus, Experimental/physiopathology
  9. Faez Sharif, Muhajir Hamid, Amin Ismail, Zainah Adam
    MyJurnal
    Hypoglycaemic and antihyperglycemic activity of oil palm Elaeis guineensis fruit extract on normal and Streptozotocininduced
    diabetic rats was studied. The oil palm fruit extract (OPF) were administered orally at different concentrations (100,
    200 and 500 mg kg-1 b.w.) in fasting and post-prandial rats. Hypoglycaemia was not observed in the group of normal rats
    treated with OPF. In fasting rats, OPF (500 mg kg-1 b.w.) has caused the blood glucose level (BGL) to reduce significantly.
    For post-prandial diabetic rats, the antihyperglycemic activity was observed after OPF treatment at concentrations 200
    and 500 mg kg-1. Chronic OPF treatments (for 28 days) had increased the diabetic rat’s body weight and reduced BGL as
    well as improved plasma insulin secretion. The result of this study suggests E. guineensis palm fruit extract show evidence
    of antihyperglycemic properties from the reduction of the BGL in diabetic rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  10. Nna VU, Bakar ABA, Mohamed M
    Life Sci, 2018 Oct 15;211:40-50.
    PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018
    AIMS: Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects.

    MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle.

    KEY FINDINGS: Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats.

    SIGNIFICANCE: Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/metabolism; Diabetes Mellitus, Experimental/pathology
  11. Osman M, Adnan A, Salmah Bakar N, Alashkham F
    Pol J Pathol, 2012 Dec;63(4):248-54.
    PMID: 23359194 DOI: 10.5114/pjp.2012.32772
    The research purpose was to experimentally investigate the effect of allicin administration on the levels of main type 1 diabetes (IDDM) autoantibodies which are anti-islet cell antibodies (ICA) with an attempt to find a relation between this immunological effect and histological and/or biochemical findings. We have evaluated, with the help of ELISA kits, the levels of ICA and serum insulin in male Sprague-Dawley rats with Streptozotocin-induced IDDM in addition to pancreatic histological findings. The four groups (6 rats each) under study received or not different intraperitoneal doses of allicin for a period of 30 days. Daily intraperitoneal administration of allicin (either at as low dose of 8 mg/kg or high dose of 16 mg/kg) for up to 30 days to type 1 diabetic rats effectively reduces levels of anti-islet cell antibodies and in addition, reduced the level of insulin due to damaged Langerhans islet cell was significantly increased in the serum due to a repairing tissue process in pancreatic tissues. These experimental results suggest that allicin treatment has a therapeutic protective effect against autoimmune reactions occurring in IDDM. The data may provide new strategies for using allicin to be recommended as an excellent candidate in the clinical management, control, and prevention of IDDM.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood*; Diabetes Mellitus, Experimental/immunology; Diabetes Mellitus, Experimental/pathology
  12. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, et al.
    J Nephrol, 2010 5 4;24(1):68-77.
    PMID: 20437405 DOI: 10.5301/jn.2010.6
    BACKGROUND: Renal sympathetic innervation plays an important role in the control of renal hemodynamics and may therefore contribute to the pathophysiology of many disease states affecting the kidney. Thus, the present study aimed to investigate the role of the renal sympathetic nervous system in the early deteriorations of renal hemodynamics and structure in rats with pathophysiological states of renal impairment.

    METHODS: Anesthetized Sprague Dawley (SD) rats with cisplatin-induced acute renal failure (ARF) or streptozotocin (STZ)-induced diabetes mellitus (DM) were subjected to a renal hemodynamic study 7 days after cisplatin and STZ administration. During the acute study, renal nerves were electrically stimulated, and responses in renal blood flow (RBF) and renal vascular resistance (RVR) were recorded in the presence and absence of renal denervation. Post mortem kidney collection was performed for histopathological assessment.

    RESULTS: In innervated ARF or DM rats, renal nerve stimulation produced significantly lower (all p<0.05, vs. innervated control) renal vasoconstrictor responses. These responses were markedly abolished when renal denervation was performed (all p<0.05); however, they appeared significantly higher compared with denervated controls (all p<0.05). Kidney injury was suppressed in denervated ARF, while, irrespective of renal denervation, renal specimens from DM rats were comparable to controls.

    CONCLUSIONS: Renal sympathoexcitation is involved in the pathogenesis of the renal impairment accompanying ARF and DM, and may even precede the establishment of an observable renal injury. There is a possible enhancement in the renal sensitivity to intrarenal norepinephrine following renal denervation in ARF and DM rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/complications*; Diabetes Mellitus, Experimental/pathology; Diabetes Mellitus, Experimental/physiopathology
  13. Sharma JN, Kesavarao U
    Pharmacology, 2002 Apr;64(4):196-200.
    PMID: 11893900 DOI: 10.1159/000056171
    We investigated the total urinary kallikrein levels, left-ventricular wall thickness and mean arterial blood pressure of nontreated and captopril-treated diabetic and nondiabetic spontaneously hypertensive rats. The mean arterial blood pressure was significantly elevated in diabetic spontaneously hypertensive rats as compared to nondiabetic spontaneously hypertensive rats. Captopril treatment caused a significant reduction in the arterial blood pressure of both nondiabetic and diabetic spontaneously hypertensive rats. The left-ventricular wall thickness was also significantly reduced in diabetic and nondiabetic spontaneously hypertensive treated with captopril as compared to nontreated diabetic and nondiabetic spontaneously hypertensive rats. The total urinary kallikrein levels were significantly raised in captopril-treated diabetic and nondiabetic spontaneously hypertensive rats against the values obtained from nontreated diabetic and nondiabetic spontaneously hypertensive rats. These results indicate that blood pressure reduction and left ventricular wall regression with captopril treatment might be due to enhanced renal kallikrein formation. The significance of these findings is discussed.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/physiopathology; Diabetes Mellitus, Experimental/urine
  14. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al.
    Drug Deliv Transl Res, 2020 Feb;10(1):216-226.
    PMID: 31637677 DOI: 10.1007/s13346-019-00675-6
    Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
    Matched MeSH terms: Diabetes Mellitus, Experimental/complications*; Diabetes Mellitus, Experimental/drug therapy; Diabetes Mellitus, Experimental/metabolism
  15. Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S
    Int J Mol Sci, 2010 May 05;11(5):2056-66.
    PMID: 20559501 DOI: 10.3390/ijms11052056
    Hyperglycemia exerts toxic effects on the pancreatic beta-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ)-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip). Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS), up-regulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while catalase (CAT) activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage.
    Matched MeSH terms: Diabetes Mellitus, Experimental/enzymology; Diabetes Mellitus, Experimental/pathology; Diabetes Mellitus, Experimental/prevention & control*
  16. Ajay M, Mustafa MR
    Vascul Pharmacol, 2006 Aug;45(2):127-33.
    PMID: 16807125 DOI: 10.1016/j.vph.2006.05.001
    Impaired vascular reactivity is a hallmark of several cardiovascular diseases that include hypertension and diabetes. This study compared the changes in vascular reactivity in age-matched experimental hypertension and diabetes, and, subsequently, tested whether these changes could be affected directly by ascorbic acid (10 microM). Endothelium-derived nitric oxide (NO) modulation of ascorbic acid effects was also investigated. All the experiments were performed in the presence of a cyclooxygenase inhibitor, indomethacin (10 microM). Results showed that the endothelium-dependent and -independent relaxations induced by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were blunted to a similar extent in isolated aortic rings from age-matched spontaneously hypertensive (SHR) (R(max): ACh = 72.83+/-1.86%, SNP = 96.6+/-1.90%) and diabetic (Rmax: ACh = 64.09+/-5.14%, SNP = 95.84+/-1.41%) rats compared with aortic rings of normal rats (Rmax: ACh = 89%, SNP = 104.0+/-1.0%). The alpha1-receptor-mediated contractions induced by phenylephrine (PE) were augmented in diabetic (Cmax = 148.8+/-9.0%) rat aortic rings compared to both normal (Cmax = 127+/-6.9%) and SHR (Cmax = 118+/-4.5%) aortic rings. Ascorbic acid pretreatment was without any significant effects on the vascular responses to ACh, SNP and PE in aortic rings from normal rats. Ascorbic acid significantly improved ACh-induced relaxations in SHR (Rmax = 89.09+/-2.82%) aortic rings to a level similar to that observed in normal aortic rings, but this enhancement in ACh-induced relaxations was only partial in diabetic aortic rings. Ascorbic acid lacked any effects on SNP-induced relaxations in both SHR and diabetic aortic rings. Ascorbic acid markedly attenuated contractions induced by PE in aortic rings from both SHR (Cmax = 92.9+/-6.68%) and diabetic (Cmax = 116.9+/-9.4%) rats. Additionally, following inhibition of nitric oxide synthesis with l-NAME, ascorbic acid attenuated PE-induced contractions in all aortic ring types studied. These results suggest that (1) vascular hyper-responsiveness to alpha(1)-receptor agonists in diabetic arteries is independent of endothelial nitric oxide dysfunction; (2) ascorbic acid directly modulates contractile responses of hypertensive and diabetic rat aortas, likely through mechanisms in part independent of preservation of endothelium-derived nitric oxide.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/physiopathology
  17. Musalmah M, Fairuz AH, Gapor MT, Ngah WZ
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S448-51.
    PMID: 12492633
    Vitamin E is composed of various subfamilies that include tocopherols and tocotrienols. These compounds have antioxidant properties but differ in structure, dietary source and potency. In this study we evaluated the efficacy of alpha-tocopherol as an antioxidant and its role in wound closure in normal and streptozotocin-induced diabetic rats. The healing of 6 cm linear incisions created on the back of each male Sprague-Dawley rat (250-300 g) was monitored by measuring the length of the wounds daily. The rats were divided into two categories; normal and streptozotocin-induced diabetic rats. For each category, the animals were further divided into two groups; those untreated and those receiving 200 mg/kg bodyweight alpha-tocopherols daily by oral gavage. All rats were fed standard food and water ad libitum. Blood samples were taken at 0, 5 and 10 days after the wounds were created for the determination of malondialdehyde levels and red cell superoxide dismutase, catalase and glutathione peroxidase activities. The results showed that alpha-tocopherol reduced plasma malondialdehyde levels, increased glutathione peroxidase activity and accelerated the rate of wound closure in treated rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/enzymology; Diabetes Mellitus, Experimental/metabolism*
  18. Pamidi N, Nayak S
    Biomed J, 2014 Jul-Aug;37(4):225-31.
    PMID: 25116719 DOI: 10.4103/2319-4170.125651
    BACKGROUND: Environmental enrichment (EE) exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ)-induced diabetic and stressed rat hippocampus.
    METHODS: Male albino rats of Wistar strain (4-5 weeks old) were grouped into normal control (NC), vehicle control (VC), diabetes (DI), diabetes + stress (DI + S), diabetes + EE (DI + E), and diabetes + stress + EE (DI + S + E) groups (n = 8 in each group). Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg). Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH) regions of hippocampus.
    RESULTS: A significant (p < 0.001) decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02) as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21) group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03). A significant (p < 0.001) increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19) and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36) group rats compared to DI and DI + S groups, respectively.
    CONCLUSIONS: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.
    Matched MeSH terms: Diabetes Mellitus, Experimental*
  19. Imam MU, Ismail M
    Int J Mol Sci, 2012;13(7):8597-608.
    PMID: 22942722 DOI: 10.3390/ijms13078597
    Xenobiotics constantly influence biological systems through several means of interaction. These interactions are disturbed in type 2 diabetes, with implications for disease outcome. We aimed to study the implications of such disturbances on type 2 diabetes and rice consumption, the results of which could affect management of the disease in developing countries. In a type 2 diabetic rat model induced through a combination of high fat diet and low dose streptozotocin injection, up-regulation of xenobiotic metabolism genes in the diabetic untreated group was observed. Xenobiotic metabolism genes were upregulated more in the white rice (WR) group than the diabetic untreated group while the brown rice (BR) group showed significantly lower expression values, though not as effective as metformin, which gave values closer to the normal non-diabetic group. The fold changes in expression in the WR group compared to the BR group for Cyp2D4, Cyp3A1, Cyp4A1, Cyp2B1, Cyp2E1, Cyp2C11, UGT2B1, ALDH1A1 and Cyp2C6 were 2.6, 2, 1.5, 4, 2.8, 1.5, 1.8, 3 and 5, respectively. Our results suggest that WR may upregulate these genes in type 2 diabetes more than BR, potentially causing faster drug metabolism, less drug efficacy and more toxicity. These results may have profound implications for rice eating populations, constituting half the world's population.
    Matched MeSH terms: Diabetes Mellitus, Experimental/enzymology*
  20. Mohamed EA, Mohamed AJ, Asmawi MZ, Sadikun A, Ebrika OS, Yam MF
    Molecules, 2011 May 04;16(5):3787-801.
    PMID: 21544041 DOI: 10.3390/molecules16053787
    Preliminary investigations were carried out to evaluate the antidiabetic effects of the leaves of O. stamineus extracted serially with solvents of increasing polarity (petroleum ether, chloroform, methanol and water); bioassay-guided purification of plant extracts using the subcutaneous glucose tolerance test (SbGTT) was also carried out. Only the chloroform extract, given at 1 g/kg body weight (b.w.), significantly reduced (P < 0.05) the blood glucose level of rats loaded subcutaneously with 150 mg/kg (b.w.) glucose. The active chloroform extract of O. stamineus was separated into five fractions using a dry flash column chromatography method. Out of the five fractions tested, only chloroform fraction 2 (Cƒ2), at the dose of 1 g/kg (b.w.) significantly inhibited (P < 0.05) blood glucose levels in SbGTT. Active Cƒ2 was split into two sub-fractions Cƒ2-A and Cƒ2-B, using a dry flash column chromatography method. The activities Cƒ2-A and Cƒ2-B were investigated using SbGTT, and the active sub-fraction was then further studied for anti-diabetic effects in a streptozotocin-induced diabetic rat model. The results clearly indicate that Cƒ2-B fraction exhibited a blood glucose lowering effect in fasted treated normal rats after glucose-loading of 150 mg/kg (b.w.). In the acute streptozotocin-induced diabetic rat model, Cƒ2-B did not exhibit a hypoglycemic effect on blood glucose levels up to 7 hours after treatment. Thus, it appears that Cƒ2-B functions similarly to metformin, which has no hypoglycemic effect but demonstrates an antihyperglycemic effect only in normogycemic models. The effect of Cƒ2-B may have no direct stimulatory effects on insulin secretion or on blood glucose levels in diabetic animal models. Verification of the active compound(s) within the active fraction (Cƒ2-B) indicated the presence of terpenoids and, flavonoids, including sinensitin.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links