RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.
CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.
METHODS: Records of dengue cases from 2013 to 2016 were obtained from the China Notifiable Disease Surveillance System. Full envelope gene sequences of dengue viruses detected from the high-risk areas of China were collected. Maximum Likelihood tree and haplotype network analyses were conducted to explore the phylogenetic relationship of viruses from high-risk areas of China.
RESULTS: A total of 56,520 cases was reported in China from 2013 to 2016. During this time, Yunnan, Guangdong and Fujian provinces were the high-risk areas. Imported cases occurred almost year-round, and were mainly introduced from Southeast Asia. The first indigenous case usually occurred in June to August, and the last one occurred before December in Yunnan and Fujian provinces but in December in Guangdong Province. Seven genotypes of DENV 1-3 were detected in the high-risk areas, with DENV 1-I the main genotype and DENV 2-Cosmopolitan the secondary one. The Maximum Likelihood trees show that almost all the indigenous viruses separated into different clusters. DENV 1-I viruses were found to be clustered in Guangdong Province, but not in Fujian and Yunnan, from 2013 to 2015. The ancestors of the Guangdong viruses in the cluster in 2013 and 2014 were most closely related to strains from Thailand or Singapore, and the Guangdong virus in 2015 was most closely related to the Guangdong virus of 2014. Based on closest phylogenetic relationships, viruses from Myanmar possibly initiated further indigenous cases in Yunnan, those from Indonesia in Fujian, while viruses from Thailand, Malaysia, Singapore and Indonesia were predominant in Guangdong Province.
CONCLUSIONS: Dengue is still an imported disease in China, although some genotypes continued to circulate in successive years. Viral phylogenies based on the envelope gene suggested periodic introductions of dengue strains into China, primarily from Southeast Asia, with occasional sustained, multi-year transmission in some regions of China.
METHODS: Data related to the number of cases involving dengue fever (DF), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) or severe dengue infections caused by different serotypes of dengue virus were obtained by using the SCOPUS, the PUBMED and the OVID search engines with the keywords "(dengue* OR dengue virus*) AND (severe dengue* OR severity of illness index* OR severity* OR DF* OR DHF* OR DSS*) AND (serotypes* OR serogroup*)", according to the MESH terms suggested by PUBMED and OVID.
RESULTS: Approximately 31 studies encompassing 15,741 cases reporting on the dengue serotypes together with their severity were obtained, and meta-analysis was carried out to analyze the data. This study found that DENV-3 from the Southeast Asia (SEA) region displayed the greatest percentage of severe cases in primary infection (95% confidence interval (CI), 31.22-53.67, 9 studies, n = 598, I2 = 71.53%), whereas DENV-2, DENV-3, and DENV-4 from the SEA region, as well as DENV-2 and DENV-3 from non-SEA regions, exhibited the greatest percentage of severe cases in secondary infection (95% CI, 11.64-80.89, 4-14 studies, n = 668-3,149, I2 = 14.77-96.20%). Moreover, DENV-2 and DENV-4 from the SEA region had been found to be more highly associated with dengue shock syndrome (DSS) (95% CI, 10.47-40.24, 5-8 studies, n = 642-2,530, I2 = 76.93-97.70%), while DENV-3 and DENV-4 from the SEA region were found to be more highly associated with dengue hemorrhagic fever (DHF) (95% CI, 31.86-54.58, 9 studies, n = 674-2,278, I2 = 55.74-88.47%), according to the 1997 WHO dengue classification. Finally, DENV-2 and DENV-4 from the SEA region were discovered to be more highly associated with secondary infection compared to other serotypes (95% CI, 72.01-96.32, 9-12 studies, n = 671-2,863, I2 = 25.01-96.75%).
CONCLUSION: This study provides evidence that the presence of certain serotypes, including primary infection with DENV-3 from the SEA region and secondary infection with DENV-2, DENV-3, and DENV-4 also from the SEA region, as well as DENV-2 and DENV-3 from non SEA regions, increased the risk of severe dengue infections. Thus, these serotypes are worthy of special consideration when making clinical predictions upon the severity of the infection.
SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42015026093 (http://www.crd.york.ac.uk/PROSPERO).