Displaying publications 21 - 40 of 864 in total

Abstract:
Sort:
  1. Soo KM, Khalid B, Ching SM, Tham CL, Basir R, Chee HY
    PeerJ, 2017;5:e3589.
    PMID: 28929009 DOI: 10.7717/peerj.3589
    BACKGROUND: Dengue viral infection is an acute infection that has the potential to have severe complications as its major sequela. Currently, there is no routine laboratory biomarker with which to predict the severity of dengue infection or monitor the effectiveness of standard management. Hence, this meta-analysis compared biomarker levels between dengue fever (DF) and severe dengue infections (SDI) to identify potential biomarkers for SDI.

    METHODS: Data concerning levels of cytokines, chemokines, and other potential biomarkers of DF, dengue hemorrhagic fever, dengue shock syndrome, and severe dengue were obtained for patients of all ages and populations using the Scopus, PubMed, and Ovid search engines. The keywords "(IL1* or IL-1*) AND (dengue*)" were used and the same process was repeated for other potential biomarkers, according to Medical Subject Headings terms suggested by PubMed and Ovid. Meta-analysis of the mean difference in plasma or serum level of biomarkers between DF and SDI patients was performed, separated by different periods of time (days) since fever onset. Subgroup analyses comparing biomarker levels of healthy plasma and sera controls, biomarker levels of primary and secondary infection samples were also performed, as well as analyses of different levels of severity and biomarker levels upon infection by different dengue serotypes.

    RESULTS: Fifty-six studies of 53 biomarkers from 3,739 dengue cases (2,021 DF and 1,728 SDI) were included in this meta-analysis. Results showed that RANTES, IL-7, IL-8, IL-10, IL-18, TGF-b, and VEGFR2 levels were significantly different between DF and SDI. IL-8, IL-10, and IL-18 levels increased during SDI (95% CI, 18.1-253.2 pg/mL, 3-13 studies, n = 177-1,909, I(2) = 98.86%-99.75%). In contrast, RANTES, IL-7, TGF-b, and VEGFR2 showed a decrease in levels during SDI (95% CI, -3238.7 to -3.2 pg/mL, 1-3 studies, n = 95-418, I(2) = 97.59%-99.99%). Levels of these biomarkers were also found to correlate with the severity of the dengue infection, in comparison to healthy controls. Furthermore, the results showed that IL-7, IL-8, IL-10, TGF-b, and VEGFR2 display peak differences between DF and SDI during or before the critical phase (day 4-5) of SDI.

    DISCUSSION: This meta-analysis suggests that IL-7, IL-8, IL-10, TGF-b, and VEGFR2 may be used as potential early laboratory biomarkers in the diagnosis of SDI. This can be used to predict the severity of dengue infection and to monitor the effectiveness of treatment. Nevertheless, methodological and reporting limitations must be overcome in future research to minimize variables that affect the results and to confirm the findings.
    Matched MeSH terms: Severe Dengue*
  2. Nashir Uddin Ahmed, Mohd Yusof Hj Ibrahim, Than Myint1, Khandaker Abu Talha, Farhana Selina, Khin Maung Ohn @ Arif
    MyJurnal
    Dengue is one of the commonest viral diseases of Africa and tropical Asia. This disease is characterized by headache, fever, generalized body pain, severe malaise and back pain. The uncomplicated Dengue which is also named the classical dengue fever usually begins 3-8 days after biting of an infected mosquito. This is a cross sectional study on clinical presentation of Dengue in a general hospital in Bangladesh. The total number of patients was 198. The study period was 6 months (July 2004 to December 2004). All the patients who were admitted in the ‘Dengue ward’ and diagnosed as Dengue by serological test were included in this study. The aim of this study was to evaluate the common clinical presentations of Dengue in a General hospital in Bangladesh. The aim and objective was to compare the clinical presentations of Dengue in Bangladesh patients with those of other international studies. Most of the patients were male (3.7 :1) in sex and young adult(s) in age (80.3%). Fever and severe backache were the commonest clinical features. Nearly two-third (74%) patients presented with hemorrhagic features. Gum bleeding (20.2%) was the commonest bleeding feature. The result of this study showed a similarity with that of other international studies.
    Matched MeSH terms: Dengue*
  3. Tan DSK, Chew V, Mohd Nuruddin N
    Singapore Med J, 1980 Dec;21(6):769-70.
    PMID: 7221591
    7.8% (8/102) of paired sera sent for dengue investigation turned out to be positive for rubella Instead. Dual infection of dengue with rubella was observed in 3.8% (4/104) cases. The clinical features and the serious implications of misdiagnosis of rubella were discussed.
    Matched MeSH terms: Dengue*
  4. Reena G, Ranjani R, Goutham KD, Sangeetha K
    Trop Biomed, 2023 Jun 01;40(2):124-128.
    PMID: 37650397 DOI: 10.47665/tb.40.2.001
    Peptide therapeutics are found to be an emerging and attractive class of treatment due to their highly specific and safe nature. Hence twenty plant peptides were subjected to screening by molecular docking against the envelope protein of the dengue virus using Clus Pro, Patch Dock, and HADDOCK servers. Physicochemical parameters, allergenicity, and toxicity profile of the plant peptides were estimated by Protparam analysis, AllergenFP, and ToxinPred web servers. Six potential compounds namely Ginkbilobin, Cycloviolin-D, Circulin-B, Circulin-A, Cycloviolacin-013, and Circulin-C showed the highest binding energy with both nonallergenic and nontoxic properties. They also exhibited desirable half-lives extending to 30 hrs except for Ginkbilobin, which showed the least half-life of 4.4 hours and non-polar activity. The residues of Ala-4 of Ginkbilobin; Arg-30 of Cycloviolin D; Arg-29 of Circulin A and C interacted with the Try 101 of the domain II of Envelope protein, implying the possible inhibition of the insertion process of the trimeric E protein during fusion with the host cells. Thus, the identified plant peptides could serve as potential leads upon further subjection to in vitro studies.
    Matched MeSH terms: Dengue Virus*
  5. Ahmad MH, Ibrahim MI, Mohamed Z, Ismail N, Abdullah MA, Shueb RH, et al.
    PMID: 30999608 DOI: 10.3390/ijerph16081380
    Thank you for the comments received on the article "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and its Associated Factors" [...].
    Matched MeSH terms: Dengue*; Severe Dengue*
  6. Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, et al.
    Front Immunol, 2022;13:889196.
    PMID: 35874775 DOI: 10.3389/fimmu.2022.889196
    The dynamics of host-virus interactions, and impairment of the host's immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
    Matched MeSH terms: Dengue*; Dengue Virus*
  7. Martinez J, Ross PA, Gu X, Ant TH, Murdochy SM, Tong L, et al.
    Appl Environ Microbiol, 2022 Nov 22;88(22):e0141222.
    PMID: 36318064 DOI: 10.1128/aem.01412-22
    The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.
    Matched MeSH terms: Dengue*; Dengue Virus*
  8. Valero N, Quiroz Y
    Invest Clin, 2014 Sep;55(3):203-5.
    PMID: 25272519
    Dengue is a viral acute febrile illness, currently considered one of the most important arbovirosis worldwide in terms of morbidity, mortality and economic impact. Various theories have been proposed to explain the pathogenesis of severe forms of dengue, involving among other factors, features related to the virus, such as the presence of more virulent strains and/or strains with increased replicative capacity. A crucial point at this time is the discovery of a new viral type, dengue 5, from nonhuman primates in Malaysia-Borneo, which could result in greater difficulties for control and vaccine production (currently in efficacy tests). Once the circulation of this viral type has been demonstrated in the human population, the high risk of infection will have extreme or controversial public health implications. Therefore, a worldwide program to combat dengue should include an urgent need to implement continuous vector elimination, community education and prevention and control of the disease. Only then, we will be aiming to reduce the morbidity and transmission risk of dengue, while new technological and effective alternatives come about.
    Matched MeSH terms: Dengue/prevention & control*; Dengue/virology*; Dengue Virus/classification*
  9. Reginald K, Chan Y, Plebanski M, Poh CL
    Curr Pharm Des, 2018;24(11):1157-1173.
    PMID: 28914200 DOI: 10.2174/1381612823666170913163904
    Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
    Matched MeSH terms: Dengue/immunology*; Dengue/therapy; Dengue Vaccines/immunology*
  10. Mia MS, Begum RA, Er AC, Abidin RD, Pereira JJ
    Asian Pac J Trop Med, 2013 Jun;6(6):462-6.
    PMID: 23711707 DOI: 10.1016/S1995-7645(13)60075-9
    OBJECTIVE: To analyze trends of dengue incidences and deaths in Malaysia from 2000 to 2010 as well as the predominant dengue virus serotypes during the last decade.

    METHODS: We used the national data on annual reported cases, deaths, incidence rate, mortality rate, and case fatality rate of dengue fever (DF) and dengue hemorrhagic fever (DHF) as well as dengue virus serotypes prevalent in Malaysia during the last decade. Trend/ regression lines were fitted to investigate the trend of dengue incidences and deaths due to the disease for a 11-year period (2000-2010). For the distribution of national incidence rate, mortality rate, and case fatality rate of DF and DHF, descriptive statistics using mean and 95% confidence intervals (CI 39) for means, and range were applied.

    RESULTS: The number of dengue cases and number of deaths have increased, on average, by 14% and 8% per year respectively. The average annual incidence rate of DF per 100 000 populations was higher as compared to that of DHF. Conversely, the yearly mean mortality rate of DHF per 100 000 populations was greater than that of DF. The simultaneous circulation of all four dengue serotypes has been found in Malaysia. But a particular dengue virus serotype predominates for at least two years before it becomes replaced by another serotype.

    CONCLUSIONS: The dengue situation in Malaysia has worsened with an increasing number of reported cases and deaths during the last decade. The increasing trend of dengue highlights the need for a more systematic surveillance and reporting of the disease.

    Matched MeSH terms: Dengue/mortality; Dengue/epidemiology*; Dengue/virology; Dengue Virus/classification; Dengue Virus/isolation & purification*
  11. Pang T
    PMID: 3433163
    Matched MeSH terms: Dengue/etiology*; Dengue/immunology; Dengue/microbiology; Dengue Virus/genetics; Dengue Virus/immunology
  12. Aeinehvand MM, Ibrahim F, Harun SW, Djordjevic I, Hosseini S, Rothan HA, et al.
    Biosens Bioelectron, 2015 May 15;67:424-30.
    PMID: 25220800 DOI: 10.1016/j.bios.2014.08.076
    Dengue is the current leading cause of death among children in several Latin American and Asian countries. Due to poverty in areas where the disease is prevalent and the high cost of conventional diagnostic systems, low cost devices are needed to reduce the burden caused by dengue infection. Centrifugal microfluidic platforms are an alternative solution to reduce costs and increase the availability of a rapid diagnostic system. The rate of chemical reactions in such devices often depends on the efficiency of the mixing techniques employed in their microfluidic networks. This paper introduces a micromixer that operates by the expansion and contraction of a microballoon to produce a consistent periodical 3D reciprocating flow. We established that microballoons reduced mixing time of 12 μl liquids from 170 min, for diffusional mixing, to less than 23 s. We have also tested the effect of the microballoon mixers on the detection of the dengue virus. The results indicate that employing a microballoon mixer enhances the detection sensitivity of the dengue virus by nearly one order of magnitude compared to the conventional ELISA method.
    Matched MeSH terms: Dengue/diagnosis; Dengue/virology*; Dengue Virus/isolation & purification*; Dengue Virus/pathogenicity
  13. Wkly. Epidemiol. Rec., 1998 Jun 12;73(24):182-3.
    PMID: 9652206
    Matched MeSH terms: Dengue/diagnosis; Dengue/epidemiology*; Severe Dengue/diagnosis; Severe Dengue/epidemiology
  14. Gaoxiong Yi Xue Ke Xue Za Zhi, 1994 Dec;10 Suppl:S113-5.
    PMID: 7844838
    Matched MeSH terms: Dengue/epidemiology; Dengue/prevention & control*
  15. Pang EL, Loh HS
    Asian Pac J Trop Med, 2017 Mar;10(3):220-228.
    PMID: 28442105 DOI: 10.1016/j.apjtm.2017.03.003
    Dengue has been ranked as one of the top emerging diseases in Asia and Latin America. Current epidemiological data may not even reflect the true burden of disease due to under-reported figures. Vector control programmes have failed to contain the disease and worst of all, no specific treatment is available at the moment. Thereby, this pushes the demand for a dengue vaccine as a long-term protective approach. Despite there are numerous vaccine candidates ahead, they could be held back by different aspects in promoting vaccine implementation. Particularly for developing nations, logistics and cost are the major hurdles that need to be addressed in order to provide a quick yet affordable medical relief. As an alternative, plant-based vaccine production system is able to offer an attractive prospect given to its advantages of biocontainment warranty, low operation cost, rapid scalability and logistics flexibility. Researches that have embarked on this scope are laid out and reviewed in terms of the feasibility of plant system to serve as a biofactory for dengue vaccine.
    Matched MeSH terms: Dengue; Dengue Virus; Dengue Vaccines
  16. da Silva Voorham JM
    Ned Tijdschr Geneeskd, 2014;158:A7946.
    PMID: 25227888
    Sylvatic dengue viruses are both evolutionarily and ecologically distinguishable from the human dengue virus (DENV). Sporadic episodes of sylvatic human infections in West Africa and Southeast Asia suggest that sylvatic DENV regularly come into contact with human beings. Following a study on the sylvatic transmission cycle in Malaysia in 2007, researchers announced that a new DENV serotype, DENV-5, had been discovered. Scientists are still sceptical about these new findings, and indicate that more data is necessary to determine whether this 'new' virus really is a different serotype or whether it is a variant of one of the four DENV serotypes already known. The good news is that this new variant has not yet established itself in the human transmission cycle. However, if it really is a new serotype this will have implications for the long-term control of dengue using vaccines currently under development.
    Matched MeSH terms: Dengue/prevention & control; Dengue/transmission; Dengue/virology*; Dengue Virus/classification*; Dengue Virus/immunology; Dengue Vaccines/immunology
  17. Rathakrishnan A, Sekaran SD
    Expert Opin Med Diagn, 2013 Jan;7(1):99-112.
    PMID: 23530846 DOI: 10.1517/17530059.2012.718759
    Dengue is of major concern around the world. Having no pathognomonic features that reliably distinguish it from other febrile illnesses, laboratory diagnosis is important for confirmation. Ideally, a dengue diagnostic test should be sensitive, specific and applicable from the onset of disease to 10 days post-infection.
    Matched MeSH terms: Dengue/diagnosis*; Dengue Virus/isolation & purification*
  18. Ibrahim F, Taib MN, Abas WA, Guan CC, Sulaiman S
    Comput Methods Programs Biomed, 2005 Sep;79(3):273-81.
    PMID: 15925426
    Dengue fever (DF) is an acute febrile viral disease frequently presented with headache, bone or joint and muscular pains, and rash. A significant percentage of DF patients develop a more severe form of disease, known as dengue haemorrhagic fever (DHF). DHF is the complication of DF. The main pathophysiology of DHF is the development of plasma leakage from the capillary, resulting in haemoconcentration, ascites, and pleural effusion that may lead to shock following defervescence of fever. Therefore, accurate prediction of the day of defervescence of fever is critical for clinician to decide on patient management strategy. To date, no known literature describes of any attempt to predict the day of defervescence of fever in DF patients. This paper describes a non-invasive prediction system for predicting the day of defervescence of fever in dengue patients using artificial neural network. The developed system bases its prediction solely on the clinical symptoms and signs and uses the multilayer feed-forward neural networks (MFNN). The results show that the proposed system is able to predict the day of defervescence in dengue patients with 90% prediction accuracy.
    Matched MeSH terms: Dengue/physiopathology*; Severe Dengue/physiopathology*
  19. Pang T, Thiam DGY, Tantawichien T, Ismail Z, Yoksan S
    Lancet, 2015 May 02;385(9979):1725-1726.
    PMID: 25943934 DOI: 10.1016/S0140-6736(15)60888-1
    Matched MeSH terms: Dengue/prevention & control*; Dengue Vaccines/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links