Displaying publications 21 - 40 of 340 in total

Abstract:
Sort:
  1. Afiqah-Aleng N, Mohamed-Hussein ZA
    Methods Mol Biol, 2021;2189:119-132.
    PMID: 33180298 DOI: 10.1007/978-1-0716-0822-7_10
    In this post-genomic era, protein network can be used as a complementary way to shed light on the growing amount of data generated from current high-throughput technologies. Protein network is a powerful approach to describe the molecular mechanisms of the biological events through protein-protein interactions. Here, we describe the computational methods used to construct the protein network using expression data. We provide a list of available tools and databases that can be used in constructing the network.
    Matched MeSH terms: Computational Biology*
  2. Goh HH, Ng CL, Loke KK
    Adv Exp Med Biol, 2018 11 2;1102:11-30.
    PMID: 30382566 DOI: 10.1007/978-3-319-98758-3_2
    Functional genomics encompasses diverse disciplines in molecular biology and bioinformatics to comprehend the blueprint, regulation, and expression of genetic elements that define the physiology of an organism. The deluge of sequencing data in the postgenomics era has demanded the involvement of computer scientists and mathematicians to create algorithms, analytical software, and databases for the storage, curation, and analysis of biological big data. In this chapter, we discuss on the concept of functional genomics in the context of systems biology and provide examples of its application in human genetic disease studies, molecular crop improvement, and metagenomics for antibiotic discovery. An overview of transcriptomics workflow and experimental considerations is also introduced. Lastly, we present an in-house case study of transcriptomics analysis of an aromatic herbal plant to understand the effect of elicitation on the biosynthesis of volatile organic compounds.
    Matched MeSH terms: Computational Biology*
  3. Chew TH, Joyce-Tan KH, Akma F, Shamsir MS
    Bioinformatics, 2011 May 1;27(9):1320-1.
    PMID: 21398666 DOI: 10.1093/bioinformatics/btr109
    birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware.
    Matched MeSH terms: Computational Biology/methods*
  4. Ahmad M, Jung LT, Bhuiyan AA
    Comput Methods Programs Biomed, 2017 Oct;149:11-17.
    PMID: 28802326 DOI: 10.1016/j.cmpb.2017.06.021
    BACKGROUND AND OBJECTIVE: Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals.

    METHODS: This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise.

    RESULTS: Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.

    CONCLUSION: This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters.

    Matched MeSH terms: Computational Biology/methods*
  5. Najam M, Rasool RU, Ahmad HF, Ashraf U, Malik AW
    Biomed Res Int, 2019;2019:7074387.
    PMID: 31111064 DOI: 10.1155/2019/7074387
    Storing and processing of large DNA sequences has always been a major problem due to increasing volume of DNA sequence data. However, a number of solutions have been proposed but they require significant computation and memory. Therefore, an efficient storage and pattern matching solution is required for DNA sequencing data. Bloom filters (BFs) represent an efficient data structure, which is mostly used in the domain of bioinformatics for classification of DNA sequences. In this paper, we explore more dimensions where BFs can be used other than classification. A proposed solution is based on Multiple Bloom Filters (MBFs) that finds all the locations and number of repetitions of the specified pattern inside a DNA sequence. Both of these factors are extremely important in determining the type and intensity of any disease. This paper serves as a first effort towards optimizing the search for location and frequency of substrings in DNA sequences using MBFs. We expect that further optimizations in the proposed solution can bring remarkable results as this paper presents a proof of concept implementation for a given set of data using proposed MBFs technique. Performance evaluation shows improved accuracy and time efficiency of the proposed approach.
    Matched MeSH terms: Computational Biology/methods*
  6. Vos RA, Katayama T, Mishima H, Kawano S, Kawashima S, Kim JD, et al.
    F1000Res, 2020;9:136.
    PMID: 32308977 DOI: 10.12688/f1000research.18236.1
    We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.
    Matched MeSH terms: Computational Biology*
  7. Sharko F, Rbbani G, Siriyappagouder P, Raeymaekers JAM, Galindo-Villegas J, Nedoluzhko A, et al.
    BMC Bioinformatics, 2023 May 19;24(1):205.
    PMID: 37208611 DOI: 10.1186/s12859-023-05331-y
    BACKGROUND: Circular RNAs (circRNAs) are covalently closed-loop RNAs with critical regulatory roles in cells. Tens of thousands of circRNAs have been unveiled due to the recent advances in high throughput RNA sequencing technologies and bioinformatic tools development. At the same time, polymerase chain reaction (PCR) cross-validation for circRNAs predicted by bioinformatic tools remains an essential part of any circRNA study before publication.

    RESULTS: Here, we present the CircPrime web-based platform, providing a user-friendly solution for DNA primer design and thermocycling conditions for circRNA identification with routine PCR methods.

    CONCLUSIONS: User-friendly CircPrime web platform ( http://circprime.elgene.net/ ) works with outputs of the most popular bioinformatic predictors of circRNAs to design specific circular RNA primers. CircPrime works with circRNA coordinates and any reference genome from the National Center for Biotechnology Information database).

    Matched MeSH terms: Computational Biology/methods
  8. Mahmud SMH, Goh KOM, Hosen MF, Nandi D, Shoombuatong W
    Sci Rep, 2024 Feb 05;14(1):2961.
    PMID: 38316843 DOI: 10.1038/s41598-024-52653-9
    DNA-binding proteins (DBPs) play a significant role in all phases of genetic processes, including DNA recombination, repair, and modification. They are often utilized in drug discovery as fundamental elements of steroids, antibiotics, and anticancer drugs. Predicting them poses the most challenging task in proteomics research. Conventional experimental methods for DBP identification are costly and sometimes biased toward prediction. Therefore, developing powerful computational methods that can accurately and rapidly identify DBPs from sequence information is an urgent need. In this study, we propose a novel deep learning-based method called Deep-WET to accurately identify DBPs from primary sequence information. In Deep-WET, we employed three powerful feature encoding schemes containing Global Vectors, Word2Vec, and fastText to encode the protein sequence. Subsequently, these three features were sequentially combined and weighted using the weights obtained from the elements learned through the differential evolution (DE) algorithm. To enhance the predictive performance of Deep-WET, we applied the SHapley Additive exPlanations approach to remove irrelevant features. Finally, the optimal feature subset was input into convolutional neural networks to construct the Deep-WET predictor. Both cross-validation and independent tests indicated that Deep-WET achieved superior predictive performance compared to conventional machine learning classifiers. In addition, in extensive independent test, Deep-WET was effective and outperformed than several state-of-the-art methods for DBP prediction, with accuracy of 78.08%, MCC of 0.559, and AUC of 0.805. This superior performance shows that Deep-WET has a tremendous predictive capacity to predict DBPs. The web server of Deep-WET and curated datasets in this study are available at https://deepwet-dna.monarcatechnical.com/ . The proposed Deep-WET is anticipated to serve the community-wide effort for large-scale identification of potential DBPs.
    Matched MeSH terms: Computational Biology/methods
  9. Ranganathan S, Gribskov M, Tan TW
    BMC Bioinformatics, 2008;9 Suppl 1(Suppl 1):S1.
    PMID: 18315840 DOI: 10.1186/1471-2105-9-S1-S1
    We provide a 2007 update on the bioinformatics research in the Asia-Pacific from the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998. From 2002, APBioNet has organized the first International Conference on Bioinformatics (InCoB) bringing together scientists working in the field of bioinformatics in the region. This year, the InCoB2007 Conference was organized as the 6th annual conference of the Asia-Pacific Bioinformatics Network, on Aug. 27-30, 2007 at Hong Kong, following a series of successful events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea) and New Delhi (India). Besides a scientific meeting at Hong Kong, satellite events organized are a pre-conference training workshop at Hanoi, Vietnam and a post-conference workshop at Nansha, China. This Introduction provides a brief overview of the peer-reviewed manuscripts accepted for publication in this Supplement. We have organized the papers into thematic areas, highlighting the growing contribution of research excellence from this region, to global bioinformatics endeavours.
    Matched MeSH terms: Computational Biology/trends*
  10. Satyaveanthan MV, Suhaimi SA, Ng CL, Muhd-Noor ND, Awang A, Lam KW, et al.
    Plant Physiol Biochem, 2021 Apr;161:143-155.
    PMID: 33588320 DOI: 10.1016/j.plaphy.2021.01.050
    The juvenile hormones (JH) in plants are suggested to act as a form of plant defensive strategy especially against insect herbivory. The oxidation of farnesol to farnesoic acid is a key step in the juvenile hormone biosynthesis pathway. We herein present the purification and characterisation of the recombinant Theobroma cacao farnesol dehydrogenase enzyme that catalyses oxidation of farnesol to farnesal. The recombinant enzyme was purified to apparent homogeneity by affinity chromatography. The purified enzyme was characterised in terms of its deduced amino acid sequences, phylogeny, substrate specificity, kinetic parameters, structural modeling, and docking simulation. The phylogenetic analysis indicated that the T. cacao farnesol dehydrogenase (TcFolDH) showed a close relationship with A. thaliana farnesol dehydrogenase gene. The TcFolDH monomer had a large N-terminal domain which adopted a typical Rossmann-fold, harboring the GxxGxG motif (NADP(H)-binding domain) and a small C-terminal domain. The enzyme was a homotrimer comprised of subunits with molecular masses of 36 kDa. The TcFolDH was highly specific to NADP+ as coenzyme. The substrate specificity studies showed trans, trans-farnesol was the most preferred substrate for the TcFolDH, suggesting that the purified enzyme was a NADP+-dependent farnesol dehydrogenase. The docking of trans, trans-farnesol and NADP+ into the active site of the enzyme showed the important residues, and their interactions involved in the substrate and coenzyme binding of TcFolDH. Considering the extensive involvement of JH in both insects and plants, an in-depth knowledge on the recombinant production of intermediate enzymes of the JH biosynthesis pathway could help provide a potential method for insect control.
    Matched MeSH terms: Computational Biology
  11. Omar, N.Y.M., Rahman, N.A., Zain, S.M.
    ASM Science Journal, 2009;3(1):77-90.
    MyJurnal
    Computational chemistry is a discipline that concerns the computing of physical and chemical properties of atoms and molecules using the fundamentals of quantum mechanics. The expense of computational chemistry calculations is significant and limited by available computational capabilities. The use of high-performance computing clusters alleviate such calculations. However, as high-performance computing (HPC) clusters have always required a balance between four major factors: raw computing power, memory size, I/O capacity, and communication capacity. In this paper, we present the results of standard HPC benchmarks in order to help assess the performance characteristics of the various hardware and software components of a home-built commodity-class Linux cluster. We optimized a range of TCP/MPICH parameters and achieved a maximum MPICH bandwidth of 666 Mbps. The bandwidth and latency of GA put/get operations were better than the corresponding MPICH send/receive ones. We also examined the NFS, PVFS2, and Lustre parallel filesystems and Lustre provided the best read/write bandwidths with more than 90% of those of the local filesystem.
    Matched MeSH terms: Computational Biology
  12. Sultan G, Zubair S
    Comput Biol Chem, 2024 Feb;108:107999.
    PMID: 38070457 DOI: 10.1016/j.compbiolchem.2023.107999
    Breast cancer continues to be a prominent cause for substantial loss of life among women globally. Despite established treatment approaches, the rising prevalence of breast cancer is a concerning trend regardless of geographical location. This highlights the need to identify common key genes and explore their biological significance across diverse populations. Our research centered on establishing a correlation between common key genes identified in breast cancer patients. While previous studies have reported many of the genes independently, our study delved into the unexplored realm of their mutual interactions, that may establish a foundational network contributing to breast cancer development. Machine learning algorithms were employed for sample classification and key gene selection. The best performance model further selected the candidate genes through expression pattern recognition. Subsequently, the genes common in all the breast cancer patients from India, China, Czech Republic, Germany, Malaysia and Saudi Arabia were selected for further study. We found that among ten classifiers, Catboost exhibited superior performance with an average accuracy of 92%. Functional enrichment analysis and pathway analysis revealed that calcium signaling pathway, regulation of actin cytoskeleton pathway and other cancer-associated pathways were highly enriched with our identified genes. Notably, we observed that these genes regulate each other, forming a complex network. Additionally, we identified PALMD gene as a novel potential biomarker for breast cancer progression. Our study revealed key gene modules forming a complex network that were consistently expressed in different populations, affirming their critical role and biological significance in breast cancer. The identified genes hold promise as prospective biomarkers of breast cancer prognosis irrespective of country of origin or ethnicity. Future investigations will expand upon these genes in a larger population and validate their biological functions through in vivo analysis.
    Matched MeSH terms: Computational Biology
  13. Sukumarran D, Hasikin K, Khairuddin ASM, Ngui R, Sulaiman WYW, Vythilingam I, et al.
    Parasit Vectors, 2024 Apr 16;17(1):188.
    PMID: 38627870 DOI: 10.1186/s13071-024-06215-7
    BACKGROUND: Malaria is a serious public health concern worldwide. Early and accurate diagnosis is essential for controlling the disease's spread and avoiding severe health complications. Manual examination of blood smear samples by skilled technicians is a time-consuming aspect of the conventional malaria diagnosis toolbox. Malaria persists in many parts of the world, emphasising the urgent need for sophisticated and automated diagnostic instruments to expedite the identification of infected cells, thereby facilitating timely treatment and reducing the risk of disease transmission. This study aims to introduce a more lightweight and quicker model-but with improved accuracy-for diagnosing malaria using a YOLOv4 (You Only Look Once v. 4) deep learning object detector.

    METHODS: The YOLOv4 model is modified using direct layer pruning and backbone replacement. The primary objective of layer pruning is the removal and individual analysis of residual blocks within the C3, C4 and C5 (C3-C5) Res-block bodies of the backbone architecture's C3-C5 Res-block bodies. The CSP-DarkNet53 backbone is simultaneously replaced for enhanced feature extraction with a shallower ResNet50 network. The performance metrics of the models are compared and analysed.

    RESULTS: The modified models outperform the original YOLOv4 model. The YOLOv4-RC3_4 model with residual blocks pruned from the C3 and C4 Res-block body achieves the highest mean accuracy precision (mAP) of 90.70%. This mAP is > 9% higher than that of the original model, saving approximately 22% of the billion floating point operations (B-FLOPS) and 23 MB in size. The findings indicate that the YOLOv4-RC3_4 model also performs better, with an increase of 9.27% in detecting the infected cells upon pruning the redundant layers from the C3 Res-block bodies of the CSP-DarkeNet53 backbone.

    CONCLUSIONS: The results of this study highlight the use of the YOLOv4 model for detecting infected red blood cells. Pruning the residual blocks from the Res-block bodies helps to determine which Res-block bodies contribute the most and least, respectively, to the model's performance. Our method has the potential to revolutionise malaria diagnosis and pave the way for novel deep learning-based bioinformatics solutions. Developing an effective and automated process for diagnosing malaria will considerably contribute to global efforts to combat this debilitating disease. We have shown that removing undesirable residual blocks can reduce the size of the model and its computational complexity without compromising its precision.

    Matched MeSH terms: Computational Biology
  14. Al-Khatib RM, Rashid NA, Abdullah R
    J Biomol Struct Dyn, 2011 Aug;29(1):1-26.
    PMID: 21696223
    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.
    Matched MeSH terms: Computational Biology/methods*
  15. Abdo A, Salim N, Ahmed A
    J Biomol Screen, 2011 Oct;16(9):1081-8.
    PMID: 21862688 DOI: 10.1177/1087057111416658
    Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed. In our previous works, the retrieval performance of the Bayesian network was observed to improve significantly when multiple reference structures or fragment weightings were used. In this article, the authors enhance the Bayesian inference network (BIN) using the relevance feedback information. In this approach, a few high-ranking structures of unknown activity were filtered from the outputs of BIN, based on a single active reference structure, to form a set of active reference structures. This set of active reference structures was used in two distinct techniques for carrying out such BIN searching: reweighting the fragments in the reference structures and group fusion techniques. Simulated virtual screening experiments with three MDL Drug Data Report data sets showed that the proposed techniques provide simple ways of enhancing the cost-effectiveness of ligand-based virtual screening searches, especially for higher diversity data sets.
    Matched MeSH terms: Computational Biology*
  16. Tang PW, Chua PS, Chong SK, Mohamad MS, Choon YW, Deris S, et al.
    Recent Pat Biotechnol, 2015;9(3):176-97.
    PMID: 27185502
    BACKGROUND: Predicting the effects of genetic modification is difficult due to the complexity of metabolic net- works. Various gene knockout strategies have been utilised to deactivate specific genes in order to determine the effects of these genes on the function of microbes. Deactivation of genes can lead to deletion of certain proteins and functions. Through these strategies, the associated function of a deleted gene can be identified from the metabolic networks.

    METHODS: The main aim of this paper is to review the available techniques in gene knockout strategies for microbial cells. The review is done in terms of their methodology, recent applications in microbial cells. In addition, the advantages and disadvantages of the techniques are compared and discuss and the related patents are also listed as well.

    RESULTS: Traditionally, gene knockout is done through wet lab (in vivo) techniques, which were conducted through laboratory experiments. However, these techniques are costly and time consuming. Hence, various dry lab (in silico) techniques, where are conducted using computational approaches, have been developed to surmount these problem.

    CONCLUSION: The development of numerous techniques for gene knockout in microbial cells has brought many advancements in the study of gene functions. Based on the literatures, we found that the gene knockout strategies currently used are sensibly implemented with regard to their benefits.

    Matched MeSH terms: Computational Biology/methods
  17. Ismail AM, Mohamad MS, Abdul Majid H, Abas KH, Deris S, Zaki N, et al.
    Biosystems, 2017 Dec;162:81-89.
    PMID: 28951204 DOI: 10.1016/j.biosystems.2017.09.013
    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions.
    Matched MeSH terms: Computational Biology/methods*
  18. Khang TF, Mohd Puaad NAD, Teh SH, Mohamed Z
    J Forensic Sci, 2021 May;66(3):960-970.
    PMID: 33438785 DOI: 10.1111/1556-4029.14655
    Wing shape variation has been shown to be useful for delineating forensically important fly species in two Diptera families: Calliphoridae and Sarcophagidae. Compared to DNA-based identification, the cost of geometric morphometric data acquisition and analysis is relatively much lower because the tools required are basic, and stable softwares are available. However, to date, an explicit demonstration of using wing geometric morphometric data for species identity prediction in these two families remains lacking. Here, geometric morphometric data from 19 homologous landmarks on the left wing of males from seven species of Calliphoridae (n = 55), and eight species of Sarcophagidae (n = 40) were obtained and processed using Generalized Procrustes Analysis. Allometric effect was removed by regressing centroid size (in log10 ) against the Procrustes coordinates. Subsequently, principal component analysis of the allometry-adjusted Procrustes variables was done, with the first 15 principal components used to train a random forests model for species prediction. Using a real test sample consisting of 33 male fly specimens collected around a human corpse at a crime scene, the estimated percentage of concordance between species identities predicted using the random forests model and those inferred using DNA-based identification was about 80.6% (approximate 95% confidence interval = [68.9%, 92.2%]). In contrast, baseline concordance using naive majority class prediction was 36.4%. The results provide proof of concept that geometric morphometric data has good potential to complement morphological and DNA-based identification of blow flies and flesh flies in forensic work.
    Matched MeSH terms: Computational Biology/methods*
  19. Jeon AJ, Kellogg D, Khan MA, Tucker-Kellogg G
    Biochem Mol Biol Educ, 2021 01;49(1):140-150.
    PMID: 32746505 DOI: 10.1002/bmb.21414
    Laboratory pedagogy is moving away from step-by-step instructions and toward inquiry-based learning, but only now developing methods for integrating inquiry-based writing (IBW) practices into the laboratory course. Based on an earlier proposal (Science 2011;332:919), we designed and implemented an IBW sequence in a university bioinformatics course. We automatically generated unique, double-blinded, biologically plausible DNA sequences for each student. After guided instruction, students investigated sequences independently and responded through IBW writing assignments. IBW assignments were structured as condensed versions of a scientific research article, and because the sequences were double blinded, they were also assessed as authentic science and evaluated on clarity and persuasiveness. We piloted the approach in a seven-day workshop (35 students) at Perdana University in Malaysia. We observed dramatically improved student engagement and indirect evidence of improved learning outcomes over a similar workshop without IBW. Based on student feedback, initial discomfort with the writing component abated in favor of an overall positive response and increasing comfort with the high demands of student writing. Similarly, encouraging results were found in a semester length undergraduate module at the National University of Singapore (155 students).
    Matched MeSH terms: Computational Biology/education*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links