Displaying publications 21 - 39 of 39 in total

Abstract:
Sort:
  1. Azidah AA, Sofian-Azirun M
    Bull. Entomol. Res., 2006 Dec;96(6):613-8.
    PMID: 17201979
    The incubation period of Spodoptera exigua (Hübner) was not influenced by the host plant, whereas larval development time and pupal period were affected. Larval development time was longest on shallot and lady's finger, followed by cabbage and long bean. Larvae did not develop beyond the first instar when fed on chilli. The pupal period was longer on lady's finger than on cabbage, shallot and long bean. Overall, adult longevity was not influenced by the host plant but there was a difference between female and male longevity among the host plants. Survival of S. exigua was affected by the host plant at the larval stage. The number of larval instars varied between 5 and 8 within and between the studied host plants. Long bean was found to be the most suitable host plant and provide the best food quality for S. exigua compared to the other host plants, as it allowed faster development, fewer larval instars and a higher survival rate.
    Matched MeSH terms: Capsicum/parasitology
  2. Kósa A, Cserháti T, Forgács E, Morais H, Mota T, Ramos AC
    J Chromatogr A, 2001 Apr 27;915(1-2):149-54.
    PMID: 11358243
    The colour pigments of five chili powders of different origins were separated and quantified by reversed-phase high-performance liquid chromatography (RP-HPLC). The similarities and dissimilarities of pigment composition of chili powders were elucidated by principal component analysis (PCA). RP-HPLC separated 50-100 pigment fractions depending on the detection wavelength and on the origin of chili powder. It was found that the pigment composition of chili powders from Malaysia and China and from India and Pakistan show marked similarities while the composition of colour pigments of chili powder from Thailand was different. It was further established that the chromatograms are similar in the first 5-35 min of development, they are highly different between 35 and 75 min and moderately different at the end of the chromatograms. It was concluded that RP-HPLC followed by PCA can be successfully used for the identification of chili powders according to the composition of their colour pigments.
    Matched MeSH terms: Capsicum/chemistry*
  3. Wingsanoi A, Siri N, McNeil JN
    J Econ Entomol, 2013 Aug;106(4):1648-52.
    PMID: 24020277
    The Malaysian fruit fly, Bactrocera latifrons (Hendel), is a pest of peppers (Capsicum spp.) in Thailand. A field trial was undertaken to determine whether five commonly used cultivars of C. annuum, with marked differences in morphology and pungency, varied in their susceptibility to infestation by B. latifrons. Experiments carried out in both the dry and rainy seasons showed temporal differences in the number of fruits per cultivar, but there was no effect of variety or season on the proportion of fruits attacked or the number of pupae obtained per infested fruit However, the number of dead larvae per infested fruit was significantly higher, and the percent of pupae giving rise to adults was lower for the larger sweet pepper than other cultivars tested.
    Matched MeSH terms: Capsicum/growth & development*
  4. Ali S, Li Y, Haq IU, Abbas W, Shabbir MZ, Khan MM, et al.
    PLoS One, 2021;16(12):e0260470.
    PMID: 34852006 DOI: 10.1371/journal.pone.0260470
    Helicoverpa armigera (Hub.) is a destructive pest of the tomato (Lycopersicon esculentum Mill) crop in Pakistan. Although insecticides are the primary management strategy used to control H. armigera, most of them are not effective due to considerable toxic residual effects on the fruits. Nonetheless, H. armigera is rapidly evolving resistance against the available pesticides for its management. This situation calls upon the need of alternative management options against the pest. Different plant extracts have been suggested as a viable, environment-friendly option for plant protection with minimal side effects. Furthermore, the plant extracts could also manage the insect species evolving resistance against pesticides. This study evaluated the efficacy of different plant extracts (i.e., Neem seed, turmeric, garlic and marsh pepper) against H. armigera. Furthermore, the impact of the plant extracts on growth and yield of tomato crop was also tested under field conditions. The results revealed that all plant extracts resulted in higher mortality of H. armigera compared to control. Similarly, the highest plant height was observed for the plants treated with the plant extracts compared to untreated plants. Moreover, the highest tomato yield was observed in plants treated with plant extracts, especially with neem seed (21.013 kg/plot) followed by pepper extract (19.25 kg/plot), and garlic extract 18.4 kg/plot) compared to the untreated plants (8.9 kg/plot). It is concluded that plant extracts can be used as eco-friendly approaches for improving tomato yield and resistance management of H. armigera.
    Matched MeSH terms: Capsicum/chemistry
  5. Usman MG, Rafii MY, Martini MY, Yusuff OA, Ismail MR, Miah G
    Cell Stress Chaperones, 2018 Mar;23(2):223-234.
    PMID: 28812232 DOI: 10.1007/s12192-017-0836-3
    Backcrossing together with simple sequence repeat marker strategy was adopted to improve popular Malaysian chilli Kulai (Capsicum annuum L.) for heat tolerance. The use of molecular markers in backcross breeding and selection contributes significantly to overcoming the main drawbacks such as increase linkage drag and time consumption, in the ancient manual breeding approach (conventional), and speeds up the genome recovery of the recurrent parent. The strategy was adopted to introgress heat shock protein gene(s) from AVPP0702 (C. annuum L.), which are heat-tolerant, into the genetic profile of Kulai, a popular high-yielding chilli but which is heat sensitive. The parents were grown on seed trays, and parental screening was carried out with 252 simple sequence repeat markers. The selected parents were crossed and backcrossed to generate F1 hybrids and backcross generations. Sixty-eight markers appeared to be polymorphic and were used to assess the backcross generation; BC1F1, BC2F1 and BC3F1. The average recipient allele of the selected four BC1F1 plants was 80.75% which were used to produce the BC2F1 generation. BC1-P7 was the best BC1F1 plant because it had the highest recovery at 83.40% and was positive to Hsp-linked markers (Hsp70-u2 and AGi42). After three successive generations of backcrossing, the average genome recovery of the recurrent parent in the selected plants in BC3F1 was 95.37%. Hsp gene expression analysis was carried out on BC1F1, BC2F1 and BC3F1 selected lines. The Hsp genes were found to be up-regulated when exposed to heat treatment. The pattern of Hsp expression in the backcross generations was similar to that of the donor parent. This confirms the successful introgression of a stress-responsive gene (Hsp) into a Kulai chilli pepper variety. Furthermore, the yield performance viz. plant height, number of fruits, fruit length and weight and total yield of the improved plant were similar with the recurrent parent except that the plant height was significantly lower than the Kulai (recurrent) parent.
    Matched MeSH terms: Capsicum/genetics*
  6. Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, et al.
    Int J Mol Sci, 2021 Nov 08;22(21).
    PMID: 34769521 DOI: 10.3390/ijms222112091
    The WRKY transcription factors (TFs) network is composed of WRKY TFs' subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs' network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30-a member of group III Pepper WRKY protein-for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper's vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper's immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper's immunity and response to RSI.
    Matched MeSH terms: Capsicum/drug effects; Capsicum/growth & development; Capsicum/immunology*; Capsicum/microbiology
  7. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Capsicum/genetics*; Capsicum/growth & development
  8. Arora H, Sharma A, Sharma S, Haron FF, Gafur A, Sayyed RZ, et al.
    Microorganisms, 2021 Apr 13;9(4).
    PMID: 33924471 DOI: 10.3390/microorganisms9040823
    Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to have various health benefits. However, its production has been affected due to various exogenous stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to disperse through various routes, their detection and diagnosis have become crucial. However, the quest for a point-of-care technology is still far from over. The use of an integrated approach with cultural and biological techniques for the management of Pythium spp. can be the best and most sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-specific resistance genes against Pythium spp. can be compensated with the candidate quantitative trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing a major role in disease spread, the currently available diagnostics in species identification, and the management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in different cultivars of C. annuum L.
    Matched MeSH terms: Capsicum
  9. Suk Huei Chan, Azrina Azlan, Amin Ismail, Nurul Husna Shafie
    MyJurnal
    Capsaicin (N-vanillyl-8-methyl-6-(E)-none amide) is a unique and significant compound from group component of capsaicinoids. This component can only be found in the plants from the Capsicum genus. It is the primary source of pungency or spiciness of chilli pepper. Traditionally, capsaicin has been used to alleviate pain. Recently, some studies showed significant therapeutic effects of capsaicin in many diseases such as diabetes, hypertension, cancer and obesity. Determination of the most effective dosage used and underlying working mechanism of capsaicin are still in progress. Currently, capsaicin research, especially in drug interaction and encapsulation technologies, has not been reviewed. We aim to report current experimental evidence of capsaicin research focusing on its pharmacolog- ical properties, interaction with drugs and ways to improve the bioavailability of capsaicin. It is essential to provide a general orientation for further investigation that can discover more potency of capsaicin usage as a medicinal supplement to treat various diseases.
    Matched MeSH terms: Capsicum
  10. Kostadinović Veličkovska S, Catalin Moţ A, Mitrev S, Gulaboski R, Brühl L, Mirhosseini H, et al.
    J Food Sci Technol, 2018 May;55(5):1614-1623.
    PMID: 29666513 DOI: 10.1007/s13197-018-3050-0
    The bioactive compounds and "in vitro" antioxidant activity measured by three antioxidant assays of some traditional and non-traditional cold-pressed edible oils from Macedonia were object of this study. The fatty acid composition showed dominance of monounsaturated oleic acid in "sweet" and "bitter" apricot kernel oils with percentages of 66.7 ± 0.5 and 57.8 ± 0.3%, respectively. The most dominant fatty acid in paprika seed oil was polyunsaturated linoleic acid with abundance of 69.6 ± 2.3%. The most abundant tocopherol was γ-tocopherol with the highest quantity in sesame seed oil (57.6 ± 0.1 mg/100 g oil). Paprika seed oil, sesame seed oil and sweet apricot oil were the richest source of phytosterols. DPPH assay was the most appropriate for the determination of the antioxidant activity of cold-pressed sunflower oil due to high abundance of α-tocopherol with a level of 22.8 ± 1.1 mg/100 g of oil. TEAC assay is the best for the determination of the antioxidant activity of sesame seed oil and paprika seed oils as the richest sources of phenolic compounds. β-carotene assay was the most suitable assay for oils obtained from high pigmented plant material. Triacylglycerols and phytosterol profiles can be used as useful markers for the origin, variety and purity of the oils.
    Matched MeSH terms: Capsicum
  11. Liang JL, Yeow CC, Teo KC, Gnanaraj C, Chang YP
    J Food Sci Technol, 2019 Oct;56(10):4696-4704.
    PMID: 31686701 DOI: 10.1007/s13197-019-03912-5
    The capsicum seed core and cabbage outer leaves are common wastes generated in the vegetable processing industry. We explored the in vitro health-promoting activity of these waste products for valorization. Freeze-dried and pulverized cabbage wastes had a high bile acid binding capacity and the capsicum wastes inhibited glucose dialysis more effectively. Methanolic extracts prepared with conventional solvent extraction and ultrasound-assisted extraction were analyzed to determine their 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, in vitro α-amylase inhibitory, in vitro lipase inhibitory, and prebiotic activity. Crude extracts of cabbage and capsicum wastes were screened using GC-MS analysis. The cabbage waste extracts showed high antioxidant activities but did not inhibit α-amylase. The capsicum waste extracts inhibited both lipase and α-amylase activities and supported the growth of the probiotic bacterium, Lactobacilli brevis. Volatile compounds of the vegetables consisted mainly of phenols and fatty acid esters. In all assays except the α-amylase inhibition assay, the extracts prepared with ultrasound-assisted solvent extraction showed higher activity than those prepared using the conventional method. The capsicum seed core and cabbage outer leaves are potential sources of phytochemicals and antioxidant fibers. Capsicum waste extract supported probiotic bacterial growth without a lag phase. These waste products may be processed into high-value functional ingredients.
    Matched MeSH terms: Capsicum
  12. Mohd Hassan N, Yusof NA, Yahaya AF, Mohd Rozali NN, Othman R
    Antioxidants (Basel), 2019 Oct 09;8(10).
    PMID: 31600964 DOI: 10.3390/antiox8100469
    Pepper of the Capsicum species is a common ingredient in various food preparations by different cultures worldwide. The Capsicum is recognised by its five main domesticated species, namely Capsicum annuum, C. baccatum, C. chinense, C. frutescens and C. pubescens. The genetic diversity in Capsicum offers fruits in wide ranges of morphology and carotenoid profile. Carotenoids enhance the value of pepper from a nutritional standpoint, despite being commonly prized for the pharmacologically active pungent capsaicinoids. Carotenoids of pepper comprise mainly of the unique, powerful and highly stable capsanthin and capsoroubin, together with β-carotene, β-cryptoxanthin, lutein, zeaxanthin, antheraxanthin and violaxanthin. These carotenoids are present at diverse profile and varying levels, biosynthetically connected to the fruit maturity stages. This review describes the health-promoting functional attributes of the carotenoids that are mainly associated with their excellent role as lipophilic antioxidants. Capsicum as a great source of carotenoids is discussed in the aspects of main domesticated species, biosynthesis, pigment profile, antioxidant activity and safety. Findings from a number of in vitro, in vivo and clinical studies provided appreciable evidence on the protective effects of pepper's carotenoids against degenerative diseases. Hence, pepper with its functional carotenoids might be recommended in health-promoting and disease preventing strategies.
    Matched MeSH terms: Capsicum
  13. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Ashtiani FA
    Plant Dis, 2012 Aug;96(8):1227.
    PMID: 30727084 DOI: 10.1094/PDIS-03-12-0262-PDN
    Symptoms of gray leaf spot were first observed in June 2011 on pepper (Capsicum annuum) plants cultivated in the Cameron Highlands and Johor State, the two main regions of pepper production in Malaysia (about 1,000 ha). Disease incidence exceeded 70% in severely infected fields and greenhouses. Symptoms initially appeared as tiny (average 1.3 mm in diameter), round, orange-brown spots on the leaves, with the center of each spot turning gray to white as the disease developed, and the margin of each spot remaining dark brown. A fungus was isolated consistently from the lesions using sections of symptomatic leaf tissue surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto PDA and V8 agar media (3). After 7 days, the fungal colonies were gray, dematiaceous conidia had formed at the end of long conidiophores (19.2 to 33.6 × 12.0 to 21.6 μm), and the conidia typically had two to six transverse and one to four longitudinal septa. Fifteen isolates were identified as Stemphylium solani on the basis of morphological criteria described by Kim et al. (3). The universal primers ITS5 and ITS4 were used to amplify the internal transcribed spacer region (ITS1, 5.8, and ITS2) of ribosomal DNA (rDNA) of a representative isolate (2). A 570 bp fragment was amplified, purified, sequenced, and identified as S. solani using a BLAST search with 100% identity to the published ITS sequence of an S. solani isolate in GenBank (1). The sequence was deposited in GenBank (Accession No. JQ736024). Pathogenicity of the fungal isolate was tested by inoculating healthy pepper leaves of cv. 152177-A. A 20-μl drop of conidial suspension (105 spores/ml) was used to inoculate each of four detached, 45-day-old pepper leaves placed on moist filter papers in petri dishes (4). Four control leaves were inoculated similarly with sterilized, distilled water. The leaves were incubated at 25°C at 95% relative humidity for 7 days. Gray leaf spot symptoms similar to those observed on the original pepper plants began to develop on leaves inoculated with the fungus after 3 days, and S. solani was consistently reisolated from the leaves. Control leaves did not develop symptoms and the fungus was not reisolated from these leaves. Pathogenicity testing was repeated with the same results. To our knowledge, this is the first report of S. solani causing gray leaf spot on pepper in Malaysia. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. P. S. Camara et al. Mycologia 94:660, 2002. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.
    Matched MeSH terms: Capsicum
  14. de Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, et al.
    IMA Fungus, 2019;10:8.
    PMID: 32355609 DOI: 10.1186/s43008-019-0001-y
    Anthracnose of chili (Capsicum spp.) causes major production losses throughout Asia where chili plants are grown. A total of 260 Colletotrichum isolates, associated with necrotic lesions of chili leaves and fruit were collected from chili producing areas of Indonesia, Malaysia, Sri Lanka, Thailand and Taiwan. Colletotrichum truncatum was the most commonly isolated species from infected chili fruit and was readily identified by its falcate spores and abundant setae in the necrotic lesions. The other isolates consisted of straight conidia (cylindrical and fusiform) which were difficult to differentiate to species based on morphological characters. Taxonomic analysis of these straight conidia isolates based on multi-gene phylogenetic analyses (ITS, gapdh, chs-1, act, tub2, his3, ApMat, gs) revealed a further seven known Colletotrichum species, C. endophyticum, C. fructicola, C. karsti, C. plurivorum, C. scovillei, C. siamense and C. tropicale. In addition, three novel species are also described as C. javanense, C. makassarense and C. tainanense, associated with anthracnose of chili fruit in West Java (Indonesia); Makassar, South Sulawesi (Indonesia); and Tainan (Taiwan), respectively. Colletotrichum siamense is reported for the first time causing anthracnose of Capsicum annuum in Indonesia and Sri Lanka. This is also the first report of C. fructicola causing anthracnose of chili in Taiwan and Thailand and C. plurivorum in Malaysia and Thailand. Of the species with straight conidia, C. scovillei (acutatum complex), was the most prevalent throughout the surveyed countries, except for Sri Lanka from where this species was not isolated. Colletotrichum siamense (gloeosporioides complex) was also common in Indonesia, Sri Lanka and Thailand. Pathogenicity tests on chili fruit showed that C. javanense and C. scovillei were highly aggressive, especially when inoculated on non-wounded fruit, compared to all other species. The existence of new, highly aggressive exotic species, such as C. javanense, poses a biosecurity risk to production in countries which do not have adequate quarantine regulations to restrict the entry of exotic pathogens.
    Matched MeSH terms: Capsicum
  15. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MZZ, Nasehi A, Nazerian E
    Plant Dis, 2013 Aug;97(8):1109.
    PMID: 30722490 DOI: 10.1094/PDIS-01-13-0042-PDN
    Symptoms of water-soaked lesions and soft rot were first observed in June 2011 on bell pepper fruits (Capsicum annuum cv. Annuum) in the two main regions of pepper production in Malaysia (Cameron Highlands and Johor State). Economic losses exceeded 40% in severely infected fields and greenhouses with the estimated disease incidence of 70%. In pepper fruits damaged by insects, sunscald, or other factors, symptoms initially appeared in the peduncle and calyx tissues and entire fruits were turned into watery masses within 2 to 6 days. Fruits infected in the field tended to collapse and hang on the plant. When the contents leaked out, the outer skin of the fruit dried and remained attached to the plant. Field-grown transplants and infected soil were identified as probable sources of inocula. A total of 50 attached fruits were collected from 10 pepper fields and greenhouses located in the two growing regions. Tissue from the margins of water-soaked lesions was surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto nutrient agar (NA) and eosin methylene blue agar (EMB) media (3). A similar bacterium was isolated from all samples. After 2 days, white to creamy bacterial colonies on NA and emerald green colonies on EMB developed. Five independent strains were subjected to further biochemical, molecular, and pathogenicity tests. Bacterial strains were gram-negative, motile rods, grew at 37°C, were facultatively anaerobic, oxidase-negative, phosphatase-negative, and catalase-positive. They degraded pectate, were sensitive to erythromycin, did not utilize Keto-methyl glucoside, were indole production-negative, and reduced sugars from sucrose (3). Acid production was negative from sorbitol and arabitol, but positive from melibiose and citrate. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment (2). Amplification of the intergenic transcribed spacer (ITS) region by G1 and L1 primers (4) gave two amplicons ca. 550 and 580 bp long. The expected amplicon was not produced with any of the strains using primers Br1f/L1r and Eca1f/Eca2r (1), whereas a 550-bp PCR product, typical of Pectobacterium carotovorum subsp. carotovorum, was obtained with primers EXPCCF and EXPCCR (1). Based on biochemical and molecular characteristics, and analysis of PCR-RFLP of 16S-ITS-23R rRNA genes using Rsa I enzyme (4), all five bacterial strains were identified as P. carotovorum subsp. carotovorum. BLAST analysis of the 16S rRNA sequence (GenBank Accession No KC189032) showed 100% identity to the 16S rRNA of P. carotovorum subsp. carotovorum strain PPC192. For pathogenicity tests, four mature pepper fruits of cv. Annuum were inoculated by injecting 10 μl of a bacterial suspension (108 CFU/ml) into pericarps and the fruits were incubated in a moist chamber at 80 to 90% relative humidity and 30°C. After 72 h, water-soaked lesions similar to those observed in the fields and greenhouses were observed and bacteria with the same characteristics were consistently reisolated, thereby fulfilling Koch's postulates. Symptoms were not observed on water-inoculated controls. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2001. (2) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (3) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St Paul, MN, 2001. (4) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
    Matched MeSH terms: Capsicum
  16. Gupta N, Yadav KK, Kumar V, Krishnan S, Kumar S, Nejad ZD, et al.
    Environ Toxicol Pharmacol, 2021 Feb;82:103563.
    PMID: 33310081 DOI: 10.1016/j.etap.2020.103563
    This study determined the heavy metals (HMs) accumulation in different vegetables in different seasons and attributed a serious health hazard to human adults due to the consumption of such vegetables in Jhansi. The total amounts of zinc (Zn), lead (Pb), nickel (Ni), manganese (Mn), copper (Cu), cobalt (Co), and cadmium (Cd) were analysed in 28 composite samples of soil and vegetables (Fenugreek, spinach, eggplant, and chilli) collected from seven agricultural fields. The transfer factor (TF) of HMs from soil to analysed vegetables was calculated, and significant non-carcinogenic health risks due to exposure to analysed heavy metals via consumption of these vegetables were computed. The statistical analysis involving Principal Component Analysis (PCA) and Pearson's correlation matrix suggested that anthropogenic activities were a major source of HMs in the study areas. The target hazard quotient of Cd, Mn, and Pb for fenugreek (2.156, 2.143, and 2.228, respectively) and spinach (3.697, 3.509, 5.539, respectively) exceeded the unity, indicating the high possibilities of non-carcinogenic health risks if regularly consumed by human beings. This study strongly suggests the continuous monitoring of soil, irrigation water, and vegetables to prohibit excessive accumulation in the food chain.
    Matched MeSH terms: Capsicum
  17. French-Monar RD, Patton AF, Douglas JM, Abad JA, Schuster G, Wallace RW, et al.
    Plant Dis, 2010 Apr;94(4):481.
    PMID: 30754480 DOI: 10.1094/PDIS-94-4-0481A
    In August 2008, 30% of tomato (Solanum lycopersicum) plants in plots in Lubbock County, Texas showed yellowing, lateral stem dieback, upward leaf curling, enlargement of stems, adventitious roots, and swollen nodes. Yellowing in leaves was similar to that seen with zebra chip disease (ZC) of potato that was confirmed in a potato field 112 km away in July 2008 and was associated with a 'Candidatus Liberibacter' species (1), similar to findings earlier in 2008 in New Zealand and California (2,3). Tissue from four symptomatic plants of cv. Spitfire and two of cv. Celebrity were collected and DNA was extracted from midribs and petioles with a FastDNA Spin Kit (Qbiogene, Inc., Carlsbad, CA,). PCR amplification was done with 16S rRNA gene primers OA2 and OI2c, which are specific for "Ca. Liberibacter solanacearum" from potato and tomato and amplify a 1.1-kb fragment of the 16S rRNA gene of this new species (1,3). Amplicons of 1.1 kb were obtained from all samples and these were sequenced in both orientations (McLab, San Francisco, CA). Sequences of the 16S rRNA gene were identical for both Spitfire and Celebrity and were submitted to the NCBI as GenBank Accession Nos. FJ939136 and FJ939137, respectively. On the basis of a BLAST search, sequence alignments revealed 99.9% identity with a new species of 'Ca. Liberibacter' from potato (EU884128 and EU884129) in Texas (1); 99.7% identity with the new species "Ca. Liberibacter solanacearum" described from potato and tomato (3) in New Zealand (EU849020 and EU834130, respectively) and from the potato psyllid Bactericera cockerelli in California (2) (EU812559, EU812556); 97% identity with 'Ca L. asiaticus' from citrus in Malaysia (EU224393) and 94% identity with both 'Ca. L. africanus' and 'Ca. L. americanus' from citrus (EU921620 and AY742824, respectively). A neighbor-joining cladogram constructed using the 16S rRNA gene fragments delineated four clusters corresponding to each species, and these sequences clustered with "Ca. L. solanacearum". A second PCR analysis was conducted with the CL514F/CL514R primer pair, which amplifies a sequence from the rplJ and rplL ribosomal protein genes of "Ca. L. solanacearum". The resulting 669-bp products were 100% identical to a sequence reported from tomato in Mexico (FJ498807). This sequence was submitted to NCBI (GU169328). ZC, a disease causing losses to the potato industry, is associated with a 'Candidatus Liberibacter' species (1-3) and was reported in Central America and Mexico in the 1990s, in Texas in 2000, and more recently in other states in the United States (4). In 2008, a "Ca. Liberibacter solanacearum" was detected on Capsicum annuum, S. betaceum, and Physalis peruviana in New Zealand (3). Several studies have shown that the potato psyllid, B. cockerelli, is a potential vector for this pathogen (2,4). To our knowledge, this is the first report of "Ca. Liberibacter solanacearum" in field tomatoes showing ZC-like foliar disease symptoms in the United States. References: (1). J. A. Abad et al. Plant Dis. 93:108, 2009 (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 93:208, 2009. (4) G. A. Secor et al. Plant Dis. 93:574, 2009.
    Matched MeSH terms: Capsicum
  18. Nurul Izzah, A., Wan Rozita, W.M., Siti Fatimah, D., Aminah, A., Md Pauzi, A., Lee, Y.H.
    MyJurnal
    A survey was conducted to investigate patterns of fruits and vegetables consumption among Malaysian adults residing in Selangor, Malaysia. Two hundred forty two subjects comprises of male (28%) and female (72%) of major ethnics (Malays-52.3%; Chinese-30.5%; Indians-16.9%) with the mean age of 43.5±18 years were studied from July to November 2002. Consumption data for vegetables were collected using 24 hours duplicate samples method while for fruits 24-hour diet record was used. The results showed that most frequently consumed leafy, leguminous, root, brassica and fruits vegetables were celery (Apium graveolens), spinach (Spinacia oleracea), water spinach (Ipomoea aquatic), long beans (Vigna sesquipedolis), French beans (Phaseolus vulgaris), carrot (Daucas carota), potato (Solanum tuberosum), Chinese mustard (Brassica juncea), round cabbage (Brassica reptans), cauliflower (Brassica oleracea var cauliflora), chilies (red, green, small or dried) (Capsicum sp.), tomato (Lycopersicum esculentum), cucumber (Cucumis sativus), long eggplant (Solanum melongena) and okra (Hibiscus esculentus). While most consumed ulam and traditional vegetables were petai (Parkia speciosa), sweet leaves (Sauropus andragynus) and Indian pennywor (Hydrocotyle asiatica). Other vegetables inclusive spices and flavorings that were preferred by subjects were shallot (Allium fistulosum), garlic(Allium sativum), onion (Alium cepa), green bean sprout (Phaseolus aureus) and curry leaves (Murraya koenigii). The most preferred fruits were banana (Musa spp.) and apples (.Malus domestica). A total consumption of fruits and vegetables among adults in Selangor was 173 g/day and the consumption among Malays (202 g/day) was significantly higher (P
    Matched MeSH terms: Capsicum
  19. Pabalan N, Jarjanazi H, Ozcelik H
    J Gastrointest Cancer, 2014 Sep;45(3):334-41.
    PMID: 24756832 DOI: 10.1007/s12029-014-9610-2
    BACKGROUND: Reported associations of capsaicin with gastric cancer development have been conflicting. Here, we examine 10 published articles that explore these associations using 2,452 cases and 3,996 controls.

    METHODS: We used multiple search strategies in MEDLINE through PubMed to seek for suitable articles that had case-control design with gastric cancer as outcome.

    RESULTS: The outcomes of our study shows protection (odds ratio [OR] 0.55, P = 0.003) and susceptibility (OR 1.94, P = 0.0004), both significant with low and medium-high intake of capsaicin, respectively, although under relatively heterogeneous conditions (P(heterogeneity) = <0.0001). Outlier analysis resulted in loss of overall heterogeneity (P = 0.14) without affecting the pooled ORs. Among the subgroups, low intake elicited protection in both Korean (OR 0.37) and Mexican (OR 0.63) populations while high intake rendered these subgroups susceptible (OR 2.96 and OR 1.57, respectively). These subgroup values were highly significant (P = 0.0001-0.01) obtained in heterogeneous conditions (P(heterogeneity) 

    Matched MeSH terms: Capsicum
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links