Displaying publications 21 - 40 of 134 in total

Abstract:
Sort:
  1. Alharthi AM, Lee MH, Algamal ZY, Al-Fakih AM
    SAR QSAR Environ Res, 2020 Aug;31(8):571-583.
    PMID: 32628042 DOI: 10.1080/1062936X.2020.1782467
    One of the most challenging issues when facing a Quantitative structure-activity relationship (QSAR) classification model is to deal with the descriptor selection. Penalized methods have been adapted and have gained popularity as a key for simultaneously performing descriptor selection and QSAR classification model estimation. However, penalized methods have drawbacks such as having biases and inconsistencies that make they lack the oracle properties. This paper proposes an adaptive penalized logistic regression (APLR) to overcome these drawbacks. This is done by employing a ratio (BWR) of the descriptors between-groups sum of squares (BSS) to the within-groups sum of squares (WSS) for each descriptor as a weight inside the L1-norm. The proposed method was applied to one dataset that consists of a diverse series of antimicrobial agents with their respective bioactivities against Candida albicans. By experimental study, it has been shown that the proposed method (APLR) was more efficient in the selection of descriptors and classification accuracy than the other competitive methods that could be used in developing QSAR classification models. Another dataset was also successfully experienced. Therefore, it can be concluded that the APLR method had significant impact on QSAR analysis and studies.
    Matched MeSH terms: Candida albicans/drug effects*
  2. Bakri MM, Rich AM, Cannon RD, Holmes AR
    Mol Oral Microbiol, 2015 Feb;30(1):27-38.
    PMID: 24975985 DOI: 10.1111/omi.12064
    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde.
    Matched MeSH terms: Candida albicans/enzymology; Candida albicans/genetics*; Candida albicans/growth & development
  3. Sasidharan S, Darah I, Jain K
    Eur Rev Med Pharmacol Sci, 2011 Sep;15(9):1020-6.
    PMID: 22013724
    The Gracilaria (G.) sp are widely used in the traditional medicine in Malaysia. The methanol extract of Gracilaria changii B.M. Xia & I.A. Abbott (Gracilariaciae) was evaluated for antiyeast activity against Candida albicans (Berkhout).
    Matched MeSH terms: Candida albicans/drug effects*; Candida albicans/growth & development; Candida albicans/ultrastructure
  4. Mokhtar M, Rismayuddin NAR, Mat Yassim AS, Ahmad H, Abdul Wahab R, Dashper S, et al.
    Biofouling, 2021 08;37(7):767-776.
    PMID: 34425729 DOI: 10.1080/08927014.2021.1967334
    Candida albicans causes candidiasis, particularly in immunocompromised patients. Streptococcus salivarius K12 (K12) is a probiotic isolated from a healthy oral cavity. The study aimed to determine the effect of K12 on C. albicans aggregation, biofilm formation and dimorphism. C. albicans ATCC MYA-4901, acquired immunodeficiency syndrome (AIDS) isolate (ALC2), and oral cancer isolate (ALC3) and K12 were used in the study. All C. albicans strains and K12 were grown in yeast peptone dextrose agar and brain heart infusion agar, respectively, prior to aggregation, biofilm and dimorphism assays. Auto-aggregation of C. albicans MYA-4901 and ALC2 was categorised as high, while the co-aggregation of the strains was low in the presence of K12. C. albicans total cell count decreased significantly when co-cultured with K12 compared with monocultured C. albicans biofilm (p 
    Matched MeSH terms: Candida albicans
  5. Ruiz-Sorribas A, Poilvache H, Kamarudin NHN, Braem A, Van Bambeke F
    Biofouling, 2021 05;37(5):481-493.
    PMID: 34225500 DOI: 10.1080/08927014.2021.1919301
    Biofilms are an important medical burden, notably for patients with orthopaedic device-related infections. When polymicrobial, these infections are more lethal and recalcitrant. Inter-kingdom biofilm infections are poorly understood and challenging to treat. Here, an in vitro three-species model including Staphylococcus aureus, Escherichia coli and Candida albicans was developed, to represent part of the diversity observed in orthopaedic infections or other clinical contexts. The importance of fungal hyphae for biofilm formation and virulence factor expression was explored. Two protocols were set up, allowing, or not, for hyphal formation. Culturable cells and biomass were characterised in both models, and biofilms were imaged in bright-field, confocal and electron microscopes. The expression of genes related to virulence, adhesion, exopolysaccharide synthesis and stress response was analysed in early-stage and mature biofilms. It was found that biofilms enriched in hyphae had larger biomass and showed higher expression levels of genes related to bacterial virulence or exopolysaccharides synthesis.
    Matched MeSH terms: Candida albicans
  6. Ting SY, Ishola OA, Ahmed MA, Tabana YM, Dahham S, Agha MT, et al.
    J Mycol Med, 2017 Mar;27(1):98-108.
    PMID: 28041812 DOI: 10.1016/j.mycmed.2016.12.002
    The virulence of Candida albicans is dependent upon fitness attributes as well as virulence factors. These attributes include robust stress responses and metabolic flexibility. The assimilation of carbon sources is important for growth and essential for the establishment of infections by C. albicans. Previous studies showed that the C. albicans ICL1 genes, which encode the glyoxylate cycle enzymes isocitratelyase are required for growth on non-fermentable carbon sources such as lactate and oleic acid and were repressed by 2% glucose. In contrast to S. cerevsiae, the enzyme CaIcl1 was not destabilised by glucose, resulting with its metabolite remaining at high levels. Further glucose addition has caused CaIcl1 to lose its signal and mechanisms that trigger destabilization in response to glucose. Another purpose of this study was to test the stability of the Icl1 enzyme in response to the dietary sugars, fructose, and galactose. In the present study, the ICL1 mRNAs expression was quantified using Quantitative Real Time PCR, whereby the stability of protein was measured and quantified using Western blot and phosphoimager, and the replacing and cloning of ICL1 ORF by gene recombination and ubiquitin binding was conducted via co-immuno-precipitation. Following an analogous experimental approach, the analysis was repeated using S. cerevisiaeas a control. Both galactose and fructose were found to trigger the degradation of the ICL1 transcript in C. albicans. The Icl1 enzyme was stable following galactose addition but was degraded in response to fructose. C. albicans Icl1 (CaIcl1) was also subjected to fructose-accelerated degradation when expressed in S. cerevisiae, indicating that, although it lacks a ubiquitination site, CaIcl1 is sensitive to fructose-accelerated protein degradation. The addition of an ubiquitination site to CaIcl1 resulted in this enzyme becoming sensitive to galactose-accelerated degradation and increases its rate of degradation in the presence of fructose. It can be concluded that ubiquitin-independent pathways of fructose-accelerated enzyme degradation exist in C. albicans.
    Matched MeSH terms: Candida albicans/genetics; Candida albicans/metabolism*; Candida albicans/pathogenicity*
  7. Astuti SD, Puspita PS, Putra AP, Zaidan AH, Fahmi MZ, Syahrom A, et al.
    Lasers Med Sci, 2019 Jul;34(5):929-937.
    PMID: 30413898 DOI: 10.1007/s10103-018-2677-4
    Candida albicans is a normal flora caused fungal infections and has the ability to form biofilms. The aim of this study was to improve the antifungal effect of silver nanoparticles (AgNPs) and the light source for reducing the biofilm survival of C. albicans. AgNPs were prepared by silver nitrate (AgNO3) and trisodium citrate (Na3C6H5O7). To determine the antifungal effect of treatments on C. albicans biofilm, samples were distributed into four groups; L + P+ was treatment with laser irradiation and AgNPs; L + P- was treatment with laser irradiation only; L - P+ was treatment with AgNPs only (control positive); L - P- was no treatment with laser irradiation or AgNPs (control negative). The growth of fungi had been monitored by measuring the optical density at 405 nm with ELISA reader. The particle size of AgNPs was measured by using (particle size analyzer) and the zeta potential of AgNPs was measured by using Malvern zetasizer. The PSA test showed that the particle size of AgNPs was distributed between 7.531-5559.644 nm. The zeta potentials were found lower than - 30 mV with pH of 7, 9 or 11. The reduction percentage was analyzed by ANOVA test. The highest reduction difference was given at a lower level irradiation because irradiation with a density energy of 6.13 ± 0.002 J/cm2 resulted in the biofilm reduction of 7.07 ± 0.23% for the sample without AgNPs compared to the sample with AgNPs that increased the biofilm reduction of 64.48 ± 0.07%. The irradiation with a 450-nm light source had a significant fungicidal effect on C. albicans biofilm. The combination of light source and AgNPs provides an increase of biofilm reduction compared to the light source itself.
    Matched MeSH terms: Candida albicans/drug effects; Candida albicans/physiology*; Candida albicans/radiation effects*
  8. Amran AI, Lim SJ, Muhd Noor ND, Salleh AB, Oslan SN
    Microb Pathog, 2023 Mar;176:106025.
    PMID: 36754101 DOI: 10.1016/j.micpath.2023.106025
    Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.
    Matched MeSH terms: Candida albicans
  9. Yacob N, Ahmad NA, Safii SH, Yunus N, Abdul Razak F
    J Prosthet Dent, 2023 Jul;130(1):131.e1-131.e7.
    PMID: 37210224 DOI: 10.1016/j.prosdent.2023.04.017
    STATEMENT OF PROBLEM: How the build orientation of a 3-dimensionally (3D) printed denture affects microbial adhesion is unclear.

    PURPOSE: The purpose of this in vitro study was to compare the adherence of Streptococcus spp. and Candida spp. on 3D-printed denture bases prepared at different build orientations with conventional heat-polymerized resin.

    MATERIAL AND METHODS: Resin specimens (n=5) with standardized 28.3 mm2 surface area were 3D printed at 0 and 60 degrees, and heat-polymerized (3DP-0, 3DP-60, and HP, respectively). The specimens were placed in a Nordini artificial mouth (NAM) model and exposed to 2 mL of clarified whole saliva to create a pellicle-coated substratum. Suspensions of Streptococcus mitis and Streptococcus sanguinis, Candida albicans and Candida glabrata, and a mixed species, each at 108 cfu/mL were pumped separately into the model for 24 hours to promote microbial adhesion. The resin specimens were then removed, placed in fresh media, and sonicated to dislodge attached microbes. Each suspension (100 μL) was aliquoted and spread on agar plates for colony counting. The resin specimens were also examined under a scanning electron microscope. The interaction between types of specimen and groups of microbes was examined with 2-way ANOVA and then further analysis with Tukey honest significant test and Kruskal-Wallis post hoc tests (α=.05).

    RESULTS: A significant interaction was observed between the 3DP-0, 3DP-60, and HP specimen types and the groups of microbes adhering to the corresponding denture resin specimens (Pcandida was 3.98-times lower on the 3DP-0 than that of HP (P

    Matched MeSH terms: Candida albicans
  10. Cheah HL, Lim V, Sandai D
    PLoS One, 2014;9(4):e95951.
    PMID: 24781056 DOI: 10.1371/journal.pone.0095951
    Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.
    Matched MeSH terms: Candida albicans/drug effects; Candida albicans/enzymology*
  11. Basma AA, Zuraini Z, Sasidharan S
    Asian Pac J Trop Biomed, 2011 Jan;1(1):20-2.
    PMID: 23569719 DOI: 10.1016/S2221-1691(11)60062-2
    To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract.
    Matched MeSH terms: Candida albicans/cytology; Candida albicans/drug effects*
  12. Wong SF, Mak JW, Pook CK
    Hybridoma (Larchmt), 2008 Oct;27(5):361-73.
    PMID: 18823263 DOI: 10.1089/hyb.2008.0021
    The Candida species are the most common fungal pathogens of systemic candidiasis. The diagnosis of invasive candidiasis remains a laboratory and clinical challenge. Thus, development of diagnostic assays to detect systemic candidiasis and to identify Candida virulence factors and associated pathogenesis through immunohistochemistry using specific monoclonals and polyclonals will be useful. Inbred Balb/c mice were immunized with C. albicans antigens, and blood was checked for the presence of reactive antibodies using ELISA. Fusion was performed using the harvested spleen cells and NS1 myeloma cells, and the clones were screened for the presence of antibody producing hybrid cells by dot-blot. Western blot analysis showed that the L2D10 monoclonal antibody was reactive against the antigens with molecular weight of 20 kDa. Experimental systemic candidiasis in mice was induced through intravenous injection of C. albicans and all the vital organs were collected for immunohistochemistry study. The monoclonal antibody reacted to surface epitopes on the yeast cells, germ tubes, and hyphae, and to immune complexes. It was used with the polyclonal antibody in a sandwich ELISA for the detection of circulating antigens in experimental candiadiasis in mice. Antibody levels were also determined using the ELISA method, and the antibody levels of C. albicans infected mice were increased compared with uninfected animals. The monoclonal antibody was used in immunoperoxidase and immunofluorescence techniques for the detection of fungal infection in tissue sections and was found to be more sensitive than conventional periodic acid Schiff or silver staining techniques. This monoclonal antibody may serve as potential primary capture antibodies for the development of a rapid diagnostic test for human systemic fungal infection.
    Matched MeSH terms: Candida albicans/immunology; Candida albicans/isolation & purification
  13. Tay ST, Chai HC, Na SL, Ng KP
    Mycopathologia, 2005 Apr;159(3):325-9.
    PMID: 15883714
    The genotypes of 221 recent isolates of Candida albicans from various clinical specimens of 213 patients admitted to the University Malaya Medical Centre, Malaysia was determined based on the amplification of a transposable intron region in the 25 S rRNA gene. The analyses of 178 C. albicans isolated from nonsterile clinical specimens showed that they could be classified into three genotypes: genotype A (138 isolates), genotype B (38 isolates) and genotype C (2 isolates). The genotyping of 43 clinical isolates from sterile specimens showed that they belonged to genotype A (29 isolates), genotype B (10 isolates), genotype C (2 isolates) and genotype D (2 isolates). The overall distribution of C. albicans genotypes in sterile and nonsterile specimens appeared similar, with genotype A being the most predominant type. This study reported the identification of C. dubliniensis (genotype D) in 2 HIV-negative patients with systemic candidiasis, which were missed by the routine mycological procedure. The study demonstrated the genetic diversity of clinical isolates of C. albicans in Malaysia.
    Matched MeSH terms: Candida albicans/genetics*; Candida albicans/isolation & purification
  14. Arzmi MH, Dashper S, Catmull D, Cirillo N, Reynolds EC, McCullough M
    FEMS Yeast Res., 2015 Aug;15(5):fov038.
    PMID: 26054855 DOI: 10.1093/femsyr/fov038
    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent.
    Matched MeSH terms: Candida albicans/classification*; Candida albicans/physiology*
  15. Jaafar R, Pettit JH
    Int J Dermatol, 1992 Nov;31(11):783-5.
    PMID: 1428429
    Skin scrapings taken from toe spaces of 200 healthy volunteers and from toe webs and groins of 150 pediatric patients were cultured for Candida albicans using the serum germ-tube test. The results showed that Candida albicans can be isolated in about 15% of normal toe spaces and 14% of children with normal groins. Although Candida albicans can be found in various grades of athlete's foot and also in some abnormal groins, we believe that it is not necessarily responsible for these conditions and is often present at these sites only as a saprophyte.
    Matched MeSH terms: Candida albicans/isolation & purification; Candida albicans/pathogenicity*
  16. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MSM, Samad S, et al.
    Microbiology (Reading), 1999 Sep;145 ( Pt 9):2405-2413.
    PMID: 10517593 DOI: 10.1099/00221287-145-9-2405
    Epidemiological studies, using the probe Ca3, have shown that in a given patient population a single cluster of genetically related Candida albicans isolates usually predominates. The authors have investigated whether these local clusters are part of a single group, geographically widespread and highly prevalent as an aetiological agent of various types of candidiasis. An unrooted neighbour-joining tree of 266 infection-causing C. albicans isolates (each from a different individual) from 12 geographical regions in 6 countries was created, based on genetic distances generated by Ca3 fingerprinting. Thirty-seven per cent of all isolates formed a single genetically homogeneous cluster (cluster A). The remainder of isolates were genetically diverse. Using the maximum branch length within cluster A as a cut-off, they could be divided into 37 groups, whose prevalence ranged between 0.3% and 9%. Strains from cluster A were highly prevalent in all but one geographical region, with a mean prevalence across all regions of 41%. When isolates were separated into groups based on patient characteristics or type of infection, strains from cluster A had a prevalence exceeding 27% in each group, and their mean prevalence was 43% across all patient characteristics. These data provide evidence that cluster A constitutes a general-purpose genotype, which is geographically widespread and acts as a predominant aetiological agent of all forms of candidiasis in all categories of patients surveyed.
    Matched MeSH terms: Candida albicans/classification*; Candida albicans/genetics*
  17. Jothy SL, Zakariah Z, Chen Y, Sasidharan S
    Molecules, 2012 Jun 07;17(6):6997-7009.
    PMID: 22678414 DOI: 10.3390/molecules17066997
    Cassia fistula seeds have many therapeutic uses in traditional medicine practice. The present investigation was undertaken to demonstrate the anticandidal activity of the C. fistula seed extract at ultra-structural level through transmission electron microscope (TEM) and scanning electron microscope (SEM) observations. The effect of seed extract on the growth profile of the Candida albicans was examined via time-kill assays and in vivo efficacy of the extract was tested in an animal model. In addition, the anticandidal effect of seed extract was further evaluated by microscopic observations using SEM and TEM to determine any major alterations in the ultrastructure of C. albicans. The complete inhibition of C. albicans growth was shown by C. fistula seed extract at 6.25 mg/mL concentration. The time-kill assay suggested that C. fistula seed extract had completely inhibited the growth of C. albicans and also exhibited prolonged anti-yeast activity. The SEM and TEM observations carried out to distinguish the metamorphosis in the morphology of control and C. fistula seed extract-treated C. albicans cells revealed the notable effect on the outer cell wall and cytoplasmic content of the C. albicans and complete collapse of yeast cell exposed to seed extract at concentration 6.25 mg/mL at 36 h. The in vitro time-kill study performed using the leaf extract at 1/2, 1 or 2 times of the MIC significantly inhibited the yeast growth with a noticeable drop in optical density (OD) of yeast culture, thus confirming the fungicidal effect of the extract on C. albicans. In addition, in vivo antifungal activity studies on candidiasis in mice showed a 6-fold decrease in C. albicans in kidneys and blood samples in the groups of animals treated with the extract (2.5 g/kg body weight). The results suggested that the C. fistula seed extract possessed good anticandidal activity and is a potential candidate for the development of anticandidal agents.
    Matched MeSH terms: Candida albicans/drug effects; Candida albicans/ultrastructure
  18. Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Shin LN, et al.
    Molecules, 2011 Sep 05;16(9):7583-92.
    PMID: 21894090 DOI: 10.3390/molecules16097583
    BACKGROUND AND OBJECTIVE: Cassia fistula L belongs to the family Leguminosae, and it is one of the most popular herbal products in tropical countries. C. fistula seeds have been used as a herbal medicine and have pharmacological activity which includes anti-bacterial, anti-fungal, and antioxidant properties. The goal of this study was to identify compounds from C. fistula seeds which are responsible for anti-Candida albicans activity using bioassay-directed isolation.

    RESULTS: The preliminary phytochemical screening of the plant seed revealed the presence of anthraquinones, flavonoids, saponins, tannins and terpenoids. The isolation of active compounds was carried out in four steps: multiple extractions, fractionation using column chromatography and purification using preparative thin-layer chromatography (TLC) and liquid chromatography/mass spectrometry (LC/MS). The structure of separated compounds was determined on the basis of mass spectrometry data. One compound was identified is roseanone.

    CONCLUSIONS: The MS analysis on the active fraction from seed extract of C. fistula confirmed the presence of roseanone with antiyeast activity.

    Matched MeSH terms: Candida albicans/drug effects; Candida albicans/ultrastructure
  19. Lim CS, Rosli R, Seow HF, Chong PP
    Int J Med Microbiol, 2011 Aug;301(6):536-46.
    PMID: 21371935 DOI: 10.1016/j.ijmm.2010.12.002
    Systemic infections of Candida albicans, the most prevalent fungal pathogen in humans, are on the rise in recent years. However, the exact mode of pathogenesis of this fungus is still not well elucidated. Previous studies using C. albicans mutants locked into the yeast form via gene deletion found that this form was avirulent and did not induce significant differential expression of host genes in vitro. In this study, a high density of C. albicans was used to infect human umbilical vein endothelial cells (HUVEC), resulting in yeast-form infections, whilst a low density of C. albicans resulted in hyphae infections. Transcriptional profiling of HUVEC response to these infections showed that high densities of C. albicans induced a stronger, broader transcriptional response from HUVEC than low densities of C. albicans infection. Many of the genes that were significantly differentially expressed were involved in apoptosis and cell death. In addition, conditioned media from the high-density infections caused a significant reduction in HUVEC viability, suggesting that certain molecules released during C. albicans and HUVEC interactions were capable of causing cell death. This study has shown that C. albicans yeast-forms, at high densities, cannot be dismissed as avirulent, but instead could possibly contribute to C. albicans pathogenesis.
    Matched MeSH terms: Candida albicans/cytology; Candida albicans/pathogenicity*
  20. Khalili V, Shokri H, Khosravi AR, Akim A, Amri Saroukolaei S
    J Mycol Med, 2016 Jun;26(2):94-102.
    PMID: 26869383 DOI: 10.1016/j.mycmed.2015.12.007
    OBJECTIVE: The purposes of this study were to purify and compare the concentration ratios of heat shock protein 90 (Hsp90) in clinical isolates of Candida albicans (C. albicans) obtained from Malaysian and Iranian patients and infected mice.

    MATERIALS AND METHODS: Hsp90 was extracted using glass beads and ultracentrifugation from yeast cells and purified by ion exchange chromatography (DEAE-cellulose) and followed by affinity chromatography (hydroxyapatite). Purity of Hsp90 was controlled by SDS-PAGE and its identification was realized by immunoblotting test.

    RESULTS: The graphs of ion exchange and affinity chromatography showed one peak in all C. albicans isolates obtained from both Malaysian and Iranian samples, infected mice and under high-thermal (42°C) and low-thermal (25°C) shock. In immunoblotting, the location of Hsp90 fragments was obtained around 47, 75 and 82kDa. The least average concentration ratios of Hsp90 were 0.350 and 0.240mg/g for Malaysian and Iranian isolates at 25°C, respectively, while the highest average concentration ratios of Hsp90 were 3.05 and 2.600mg/g for Malaysian and Iranian isolates at 42°C, respectively. There were differences in the ratio amount of Hsp90 between Malaysian isolates (1.01±0.07mg/g) and mice kidneys (1.23±0.28mg/g) as well as between Iranian isolates (0.70±0.19mg/g) and mice kidneys (1.00±0.28mg/g) (P<0.05).

    CONCLUSION: The results showed differences in all situations tested including Iranian and Malaysian isolates, samples treated with temperatures (25°C or 42°C) and before and after infecting the mice (37°C), indicating higher virulent nature of this yeast species in high temperature in human and animal models.

    Matched MeSH terms: Candida albicans/isolation & purification*; Candida albicans/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links