Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS, et al.
    Bioorg Med Chem Lett, 2012 Aug 1;22(15):4930-3.
    PMID: 22749825 DOI: 10.1016/j.bmcl.2012.06.047
    A series of twelve dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H(37)Rv and INH resistant M. tuberculosis strains using agar dilution method, four of them showed good activity with MIC of less than 1 μM. Compound 4'-[5-(4-fluorophenyl)pyridin-3-yl]-1'-methyldispiro[indan-2,2' pyrrolidine-3',2″-indan]-1,3,1″-trione (4b) was found to be the most active with MIC of 0.1215 and 5.121 μM, respectively.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  2. Noorizhab Fakhruzzaman MN, Abidin NZ, Aziz ZA, Lim WF, Richard JJ, Noorliza MN, et al.
    Int J Mycobacteriol, 2019 12 4;8(4):320-328.
    PMID: 31793500 DOI: 10.4103/ijmy.ijmy_144_19
    Background: Tuberculosis (TB) is still a major health problem in Malaysia with thousands of cases reported yearly. This is further burdened with the emergence of multidrug-resistant TB (MDR-TB). Whole-genome sequencing (WGS) provides high-resolution molecular epidemiological data for the accurate determination of Mycobacterium tuberculosis complex (MTBC) lineages and prediction of the drug-resistance patterns. This study aimed to investigate the diversity of MTBC in Malaysia in terms of lineage and drug-resistance patterns of the clinical MTBC isolates using WGS approach.

    Methods: The genomes of 24 MTBC isolated from sputum and pus samples were sequenced. The phenotypic drug susceptibility testing (DST) of the isolates was determined for ten anti-TB drugs. Bioinformatic analysis comprising genome assembly and annotation and single-nucleotide polymorphism (SNP) analysis in genes associated with resistance to the ten anti-TB drugs were done on each sequenced genome.

    Results: The draft assemblies covered an average of 97% of the expected genome size. Eleven isolates were aligned to the Indo-Oceanic lineage, eight were East-Asian lineage, three were East African-Indian lineage, and one was of Euro-American and Bovis lineages, respectively. Twelve of the 24 MTBC isolates were phenotypically MDR M. tuberculosis: one is polyresistance and another one is monoresistance. Twenty-six SNPs across nine genes associated with resistance toward ten anti-TB drugs were detected where some of the mutations were found in isolates that were previously reported as pan-susceptible using DST. A haplotype consisting of 65 variants was also found among the MTBC isolates with drug-resistance traits.

    Conclusions: This study is the first effort done in Malaysia to utilize 24 genomes of the local clinical MTBC isolates. The high-resolution molecular epidemiological data obtained provide valuable insights into the mechanistic and epidemiological qualities of TB within the vicinity of Southeast Asia.

    Matched MeSH terms: Antitubercular Agents/pharmacology*
  3. AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F
    Pharmacol Res, 2018 02;128:288-305.
    PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011
    Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  4. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2014;9:4749-62.
    PMID: 25336952 DOI: 10.2147/IJN.S63608
    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  5. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Drug Des Devel Ther, 2014;8:1029-36.
    PMID: 25114509 DOI: 10.2147/DDDT.S63753
    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  6. Asad M, Oo CW, Kumar RS, Osman H, Ali MA
    Acta Pol Pharm, 2013 Mar-Apr;70(2):221-8.
    PMID: 23614277
    A series of some new bisadducts possessing five, six membered and coumarin subunits were synthesized by the condensation of heterocyclic aldehydes with active methylene compounds and characterized by IR, NMR and X-ray crystallographic studies and were assayed as antitubercular agents. Among the bisadducts, 4-hydroxy-3-[(4-hydroxy-2-oxo-2H-3-chromenyl)(3-thienyl)methyl]-2H-2-chromenone 3a was found to be the most promising compound, active against Mycobacterium tuberculosis (Mtb) H37Rv and isoniazid resistant Mycobacterium tuberculosis (INHR-Mtb) with minimum inhibitory concentration 5.22 and 8.34 microM, respectively.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  7. Lokesh BVS, Prasad YR, Shaik AB
    Infect Disord Drug Targets, 2019;19(3):310-321.
    PMID: 30556506 DOI: 10.2174/1871526519666181217120626
    BACKGROUND: Many synthetic procedures were reported till date to prepare pyrazoline derivatives. Some have published pyrazolines from different chalcone derivatives in the literature.

    OBJECTIVE: A series of new pyrazolines containing novel 2,5-dichloro-3-acetylthiophene chalcone moiety (PZT1-PZT20) have been synthesized, characterized by 1HNMR and 13CNMR and evaluated for them in vitro antitubercular activity against M. tuberculosis H37Rv strain and in vitro anticancer activity against DU-145 prostate cancer cell lines and all compounds were also screened for molecular docking studies against specific targeted protein domains.

    METHODS: All compounds were screened for potential activity against Mycobacterium tuberculosis H37Rv (MTB) strain and anticancer activity against DU-149 prostate cancer cell lines using MTT cytotoxicity assay.

    RESULTS: Among the series, compound PZT5 with 2", 4"-dichlorophenyl group at 5-position on the pyrazoline ring exhibited the most potent antitubercular activity (MIC=1.60 µg/mL) and compounds PZT2, PZT9, PZT11, PZT15, and PZT20 showed similar antitubercular activity against standard pyrazinamide (MIC=3.12 µg/mL) by broth dilution assay. PZT15 and PZT17 with 4"- pyridinyl and 2"-pyrrolyl groups on pyrazoline ring were found to exhibit better anticancer activity against DU-149 prostate cancer cell lines with IC50 values of 2.0±0.2 µg/mL and 6.0±0.3 µg/mL respectively by MTT assay. The preliminary structure-activity relationship has been summarized. The molecular docking studies with crystalline structures of enoyl acyl carrier protein reductase InhA interaction with target protein (2NSD; PDB and 3FNG; PDB) of Mycobacterium tuberculosis H37Rv (MTB) strain have also exhibited good ligand interaction and binding affinity. Ligand interaction and binding affinity were estimated using crystal structures of both types of enoyl acyl carrier protein reductase InhA (3FNG.pdb) and found to be much higher (-16.70 to - 19.20 kcal/mol) compared with pyrazinamide (-10.70 kcal/mol) as a standard target molecule. Whereas the binding affinities of six active compounds with crystal structure of other type of enoyl acyl carrier protein reductase InhA (2NSD.pdb) were much similar and higher (-9.30 to - 11.20 kcal/mole) than pyrazinamide (-11.10 kcal/mole).

    CONCLUSION: These new pyrazolines would be promising potent inhibitors of drug sensitive and drug resistant Mycobacterium tuberculosis strain and potential anticancer agents against prostate cancer and other prototypes of cancers.

    Matched MeSH terms: Antitubercular Agents/pharmacology*
  8. Bharkavi C, Vivek Kumar S, Ashraf Ali M, Osman H, Muthusubramanian S, Perumal S
    Bioorg Med Chem Lett, 2017 Jul 15;27(14):3071-3075.
    PMID: 28552337 DOI: 10.1016/j.bmcl.2017.05.050
    An efficient one-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo[3,4-c]pyrrole]-tetraone derivatives through three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from ninhydrin and sarcosine with a series of 1-aryl-1H-pyrrole-2,5-diones is described. The synthesised compounds were screened for their antimycobacterial and AChE inhibition activities. Compound 4b (IC50 1.30µM) has been found to display twelve fold antimycobacterial activity compared to cycloserine and it is thirty seven times more active than pyrimethamine. Compound 4h displays maximum AchE inhibitory activity with IC50 value of 0.78±0.01µmol/L.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  9. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2016;11:3225-37.
    PMID: 27486322 DOI: 10.2147/IJN.S102406
    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  10. Saifullah B, Maitra A, Chrzastek A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023384 DOI: 10.3390/molecules22101697
    Tuberculosis (TB) is a dreadful bacterial disease, infecting millions of human and cattle every year worldwide. More than 50 years after its discovery, ethambutol continues to be an effective part of the World Health Organization's recommended frontline chemotherapy against TB. However, the lengthy treatment regimens consisting of a cocktail of antibiotics affect patient compliance. There is an urgent need to improve the current therapy so as to reduce treatment duration and dosing frequency. In this study, we have designed a novel anti-TB multifunctional formulation by fabricating graphene oxide with iron oxide magnetite nanoparticles serving as a nano-carrier on to which ethambutol was successfully loaded. The designed nanoformulation was characterised using various analytical techniques. The release of ethambutol from anti-TB multifunctional nanoparticles formulation was found to be sustained over a significantly longer period of time in phosphate buffer saline solution at two physiological pH (7.4 and 4.8). Furthermore, the nano-formulation showed potent anti-tubercular activity while remaining non-toxic to the eukaryotic cells tested. The results of this in vitro evaluation of the newly designed nano-formulation endorse its further development in vivo.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  11. Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG
    Drug Des Devel Ther, 2016;10:2299-310.
    PMID: 27486307 DOI: 10.2147/DDDT.S104037
    A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  12. Verma R, Boshoff HIM, Arora K, Bairy I, Tiwari M, Varadaraj BG, et al.
    Drug Dev Res, 2020 May;81(3):315-328.
    PMID: 31782209 DOI: 10.1002/ddr.21623
    A new series of novel triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) analogues were designed, synthesized, and screened for their in vitro antimycobacterial and antibacterial activities. Most of the compounds showed significant activity against Mycobacterium tuberculosis H37Rv strain with minimum inhibitory concentration (MIC) values in 20-40 μM range in GAST/Fe medium when compared with triclosan (43 μM) in the first week of assay, and after additional incubation, seven compounds, that is, 2a, 2c, 2g, 2h, 2i, 2j, and 2m, exhibited MIC values at the concentration of 20-40 μM. The compounds also showed more significant activity against Bacillus subtilis and Staphylococcus aureus. The synthesized compounds showed druggable properties, and the predicted ADME (absorption, distribution, metabolism, and excretion) properties were within the acceptable limits. The in silico studies predicted better interactions of compounds with target protein residues and a higher dock score in comparison with triclosan. Molecular dynamics simulation study of the most active compound 2i was performed in order to further explore the stability of the protein-ligand complex and the protein-ligand interaction in detail.
    Matched MeSH terms: Antitubercular Agents/pharmacology*
  13. Saeidi A, Tien Tien VL, Al-Batran R, Al-Darraji HA, Tan HY, Yong YK, et al.
    PLoS One, 2015;10(4):e0124659.
    PMID: 25894562 DOI: 10.1371/journal.pone.0124659
    Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved antimicrobial MR1-restricted CD8(+) T cells co-expressing the semi-invariant TCR Vα7.2, and are numerous in the blood and mucosal tissues of humans. MAIT cells appear to undergo exhaustion in chronic viral infections. However, their role in human immunodeficiency virus type 1 (HIV-1) mono-infection and HIV/tuberculosis (TB) co-infection have seldom been elaborately investigated. We conducted a cross-sectional study to investigate the frequencies and phenotypes of CD161(++)CD8(+) T cells among anti-retroviral therapy (ART)/anti-TB therapy (ATT) treatment-naïve HIV/TB co-infected, ART/TB treated HIV/TB co-infected, ART naïve HIV-infected, ART-treated HIV-infected patients, and HIV negative healthy controls (HCs) by flow cytometry. Our data revealed that the frequency of MAIT cells was severely depleted in HIV mono- and HIV/TB co-infections. Further, PD-1 expression on MAIT cells was significantly increased in HIV mono- and HIV-TB co-infected patients. The frequency of MAIT cells did not show any significant increase despite the initiation of ART and/or ATT. Majority of the MAIT cells in HCs showed a significant increase in CCR6 expression as compared to HIV/TB co-infections. No marked difference was seen with expressions of chemokine co-receptor CCR5 and CD103 among the study groups. Decrease of CCR6 expression appears to explain why HIV-infected patients display weakened mucosal immune responses.
    Matched MeSH terms: Antitubercular Agents/pharmacology
  14. Javaid A, Hasan R, Zafar A, Chaudry MA, Qayyum S, Qadeer E, et al.
    Int J Tuberc Lung Dis, 2017 03 01;21(3):303-308.
    PMID: 28225340 DOI: 10.5588/ijtld.16.0444
    BACKGROUND: Drug resistance in general, and multidrug-resistant tuberculosis (MDR-TB) in particular, threatens global tuberculosis (TB) control efforts. Population-based estimates of drug resistance are needed to develop strategies for controlling drug-resistant TB in Pakistan.

    OBJECTIVE: To obtain population-based data on Mycobacterium tuberculosis drug resistance in Pakistan.

    METHODS: To obtain drug resistance data, we conducted a population-based study of TB cases in all provinces of Pakistan. We performed culture and drug susceptibility testing on M. tuberculosis isolates from patients with a prior history of anti-tuberculosis treatment (retreatment cases) from all over the country.

    RESULTS: Of 544 isolates from previously treated cases, 289 (53.1%) were susceptible to all first-line drugs, 255 (46.9%) were resistant to at least one anti-tuberculosis drug and 132 (24.3%) were MDR-TB. Among MDR-TB isolates, 47.0% were ofloxacin (OFX) resistant. Extensively drug-resistant TB was found in two (0.4%) isolates.

    CONCLUSION: Prevalence of drug resistance in retreatment isolates was high. The alarmingly high prevalence of OFX resistance among MDR-TB isolates may threaten the success of efforts to control and treat MDR-TB.

    Matched MeSH terms: Antitubercular Agents/pharmacology*
  15. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

    Matched MeSH terms: Antitubercular Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links