Displaying publications 21 - 40 of 82 in total

Abstract:
Sort:
  1. Jeevaraj M, Sivajeyanthi P, Edison B, Thanigaimani K, Balasubramani K, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2017 Oct 01;73(Pt 10):1595-1598.
    PMID: 29250389 DOI: 10.1107/S2056989017013950
    In the title mol-ecular salt, 2C6H10N3O+·C8H4O42-, the N atom of each of the two 2-amino-4-meth-oxy-6-methyl-pyrimidine mol-ecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8) and 7.95 (8)°. Each of the cations is linked to the anion through a pair of N-H⋯O(carboxyl-ate) hydrogen bonds, forming cyclic R22(8) ring motifs which are then linked through inversion-related N-H⋯O hydrogen bonds, giving a central R24(8) motif. Peripheral amine N-H⋯O hydrogen-bonding inter-actions on either side of the succinate anion, also through centrosymmetric R22(8) extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features π-π stacking inter-actions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9) Å]. The inter-molecular inter-actions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.
    Matched MeSH terms: Anions
  2. Jeevaraj M, Sivajeyanthi P, Edison B, Thanigaimani K, Balasubramani K, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1305-1307.
    PMID: 28932461 DOI: 10.1107/S2056989017011252
    In the title mol-ecular salt, C6H10N3O(+)·C7H5O3(-), the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intra-molecular O-H⋯O hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two N-H⋯O hydrogen bonds [R2(2)(8) motif] to generate an ion pair in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further N-H⋯O hydrogen bonds into a tetra-meric DDAA array. The tetra-mers are linked by pairs of C-H⋯O hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.
    Matched MeSH terms: Anions
  3. Rahman WSKA, Ahmad J, Halim SNA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1363-1367.
    PMID: 28932475 DOI: 10.1107/S2056989017011677
    The full mol-ecule of the binuclear title compound, [Cd2Cl2(C6H8O4)(C6H8N2)2(H2O)2], is generated by the application of a centre of inversion located at the middle of the central CH2-CH2 bond of the adipate dianion; the latter chelates a CdII atom at each end. Along with two carboxyl-ate-O atoms, the CdII ion is coordinated by the two N atoms of the chelating benzene-1,2-di-amine ligand, a Cl- anion and an aqua ligand to define a distorted octa-hedral CdClN2O3 coordination geometry with the monodentate ligands being mutually cis. The disparity in the Cd-N bond lengths is related to the relative trans effect exerted by the Cd-O bonds formed by the carboxyl-ate-O and aqua-O atoms. The packing features water-O-H⋯O(carboxyl-ate) and benzene-1,2-di-amine-N-H⋯Cl hydrogen bonds, leading to layers that stack along the a-axis direction. The lack of directional inter-actions between the layers is confirmed by a Hirshfeld surface analysis.
    Matched MeSH terms: Anions
  4. Mohd Tajuddin A, Bahron H, Mohd Zaki H, Kassim K, Chantrapromma S
    Acta Crystallogr E Crystallogr Commun, 2015 Apr 1;71(Pt 4):350-3.
    PMID: 26029387 DOI: 10.1107/S2056989015004405
    The asymmetric unit of the title complex, [Pd(C15H13FNO)2], contains one half of the mol-ecule with the Pd(II) cation lying on an inversion centre and is coordinated by the bidentate Schiff base anion. The geometry around the cationic Pd(II) centre is distorted square planar, chelated by the imine N- and phenolate O-donor atoms of the two Schiff base ligands. The N- and O-donor atoms of the two ligands are mutually trans, with Pd-N and Pd-O bond lengths of 2.028 (2) and 1.9770 (18) Å, respectively. The fluoro-phenyl ring is tilted away from the coordination plane and makes a dihedral angle of 66.2 (2)° with the phenolate ring. In the crystal, mol-ecules are linked into chains along the [101] direction by weak C-H⋯O hydrogen bonds. Weak π-π inter-actions with centroid-centroid distances of 4.079 (2) Å stack the mol-ecules along c.
    Matched MeSH terms: Anions
  5. Hizam SM, Yamin BM
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):o378.
    PMID: 26090175 DOI: 10.1107/S2056989015008385
    The title salt, C5H11N2S(+)·C7H4ClO2 (-), comprises a 2-amino-3-ethyl-4,5-di-hydro-1,3-thia-zol-3-ium cation in which the five-membered ring adopts an envelope conformation with the methyl-ene C adjacent to the S atom being the flap, and a planar 3-chloro-benzoate anion (r.m.s. deviation for the 10 non-H atoms = 0.021 Å). The most prominent feature of the crystal packing are N-H⋯O hydrogen bonds whereby the two amine H atoms bridge two carboxyl-ate O atoms resulting in the formation of a centrosymmetric 12-membered {⋯HNH⋯OCO}2 synthon involving two cations and two anions. These aggregates are linked by C-H⋯O inter-actions to form a supra-molecular chain along the a-axis direction.
    Matched MeSH terms: Anions
  6. Hasnah Haron, Norfasihah Raob, Tan, Mei Chen
    MyJurnal
    Kajian ini dijalankan untuk menentukan kesan perencatan fi tat terhadap bioavailabiliti kalsium (Ca), ferum (Fe) dan zink (Zn) dalam produk kacang soya tempatan terpilih. Fitat menyebabkan kesan perencatan terhadap penyerapan mineral seperti Ca, Fe dan Zn dengan membentuk kompleks yang tidak larut dan tidak dapat dicernakan. Kesan perencatan fi tat terhadap bioavailabiliti mineral seperti Ca, Fe dan Zn telah dianggarkan dengan nisbah molar fi tat kepada mineral. Kandungan fi tat ditentukan dengan menggunakan kaedah pertukaran anion dan kandungan mineral ditentukan dengan Spektrofotometer Serapan Atom (AAS). Produk kacang soya dibeli dari pasar malam dan gerai makanan yang terletak di Cheras dan Sri Rampai, Kuala Lumpur. Setiap sampel yang dibeli dari kedua- dua lokasi dianalisis secara duplikat. Kajian ini mendapati kek soya dan kesemua masakan yang mengandungi tempe tidak mempunyai kandungan fi tat. Ini mungkin disebabkan oleh kehadiran R. oligosporus yang menghasilkan fi tase lalu menghidrolisiskan kandungan fi tat semasa proses fermentasi tempe. Terdapat lima jenis sampel makanan yang mempunyai nisbah molar fi tat/Ca > 0.24, sepuluh jenis sampel makanan dengan nisbah molar fi tat/ Fe > 1, lapan jenis sampel makanan mempunyai nisbah molar fi tat/ Zn > 15 dan satu jenis sampel makanan mempunyai nisbah molar [fi tat x Ca]/ Zn > 200. Keputusan nisbah molar fi tat/ mineral dari kajian ini menganggarkan bioavailabiliti Ca, Fe dan Zn yang rendah. Kesimpulannya, kek soya dan masakan mengandungi tempe mempunyai bioavailabiliti mineral yang tinggi manakala tau-hoo pok bakar mempunyai bioavailabiliti mineral yang rendah.

    Matched MeSH terms: Anions
  7. Chun YT, Kok SK, Shahidan Radiman, Irman Abdul Rahman, Nur Farhana Amari
    Sains Malaysiana, 2014;43:623-628.
    Catanionic system using anionic sodium bis-(2ethylhexyl)sulfosuccinate (Am) and cationic cetyltrimethylammonium bromide (cTAB) is studied. The system is prepared by addition of CTAB solution to a prepared AOT solution until slight anionic-rich catanionic phase is produced. Catanionic system consists of the mixture of different types of surfactants and counterion due to electrostatic interaction between the oppositely charged surfactant. Both of these products affect the in surface activity of the surfactant. Hydrodynamic diameters decrease and clearer solution were seen with the increase of CTAB concentration in solution mixture. As a result, mixed surfactant with larger hydrophobic region and the presence of counterion will induce smaller vesicle to form in catanionic system.
    Matched MeSH terms: Anions
  8. Nur Hazimah Abdul Halim, Norfazrin Mohd Hanif, Mohamed Rozali Othman, Mohd Talib Latif
    Sains Malaysiana, 2010;39:175-179.
    Surfactants in the atmosphere may act as cloud condensation nuclei, with a potentially negative impact on the global climate. Therefore, accurate determination of surfactants is crucial in order to investigate the possible effects of surfactants on the atmosphere. The aim of this study was to identify the optimum sampling method for measuring the maximum quantity of surfactants present in ambient air. Air samples were collected using a range of air sampling pumps that were made to vary in terms of flow rate, storage period, type of absorbing solution and the characteristics of the impinger tube. Samples obtained were analysed by colourimetry for anionic and cationic surfactants as methylene blue-active substances (MBAS) and disulphine blue-active substances (DBAS), respectively. Absorbance was measured at 650 nm for MBAS and 628 nm for DBAS using UV-visible spectrophotometer. We found that the optimum sampling method consisted of an absorbent solution (deionised water, buffer solution and methylene blue/disulphine blue solution) with the flow rate of 1.0 L/min. The concentration of surfactants in all sampling methods remained constant regardless of the storage period (1 day and 4 days), indicating that surfactants in the absorbing solution are quite stable. Covering the impinger tube was shown to influence the amount of both anionic and cationic surfactants detected.
    Matched MeSH terms: Anions
  9. Khan HW, Elgharbawy AAM, Bustam MA, Goto M, Moniruzzaman M
    Molecules, 2023 Mar 03;28(5).
    PMID: 36903590 DOI: 10.3390/molecules28052345
    Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.
    Matched MeSH terms: Anions
  10. Warsi Khan H, Kaif Khan M, Moniruzzaman M, Al Mesfer MK, Danish M, Irshad K, et al.
    Environ Res, 2023 Aug 15;231(Pt 1):116058.
    PMID: 37178749 DOI: 10.1016/j.envres.2023.116058
    An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
    Matched MeSH terms: Anions
  11. Sundaram V, Ramanan RN, Selvaraj M, Ahemad N, Vijayaraghavan R, MacFarlane DR, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 3):126665.
    PMID: 37689282 DOI: 10.1016/j.ijbiomac.2023.126665
    Despite extensive studies revealing the potential of cholinium-based ionic liquids (ILs) in protein stabilization, the nature of interaction between ILs' constituents and protein residues is not well understood. In this work, we used a combined computational and experimental approach to investigate the structural stability of a peptide hormone, insulin aspart (IA), in ILs containing a choline cation [Ch]+ and either dihydrogen phosphate ([Dhp]-) or acetate ([Ace]-) as anions. Although IA remained stable in both 1 M [Ch][Dhp] and 1 M [Ch][Ace], [Dhp]- exhibited a much stronger stabilization effect than [Ace]-. Both the hydrophilic ILs intensely hydrated IA and increased the number of water molecules in IA's solvation shell. Undeterred by the increased number of water molecules, the native state of IA's hydrophobic core was maintained in the presence of ILs. Importantly, our results reveal the importance of IL concentration in the medium which was critical to maintain a steady population of ions in the microenvironment of IA and to counteract the denaturing effect of water molecules. Through molecular docking, we confirm that the anions exert the dominant effect on the structure of IA, while [Ch]+ have the secondary influence. The computational results were validated using spectroscopic analyses (ultra-violet, fluorescence, and circular dichroism) along with dynamic light scattering measurements. The extended stability of IA at 30 °C for 28 days in 1 M [Ch][Dhp] and [Ch][Ace] demonstrated in this study reveals the possibility of stabilizing IA using cholinium-based ILs.
    Matched MeSH terms: Anions
  12. Kusrini E, Saleh MI, Lecomte C
    Spectrochim Acta A Mol Biomol Spectrosc, 2009 Sep 15;74(1):120-6.
    PMID: 19560960 DOI: 10.1016/j.saa.2009.05.024
    (1)H NMR evidence for direct coordination between the Ln(III) ion and the oxygen atoms of the pentaethylene glycol (EO5) ligand and the picrate anion (Pic) in [Ln(Pic)(2)(EO5)][Pic] {Ln=Ce and Nd} complexes are confirmed by single X-ray diffraction. No dissociation of Ln-O bonds in dimethyl sulfoxide-d solution was observed in NMR studies conducted at different temperatures ranging 25-100 degrees C. The Ln(III) ion was chelated to nine oxygen atoms from the EO5 ligand in a hexadentate manner and the two Pic anions in each bidentate and monodentate modes. Both compounds are isostructural and crystallized in monoclinic with space group P2(1)/c. Coordination environment around the Ce1 and Nd1 atoms can be described as tricapped trigonal prismatic and monocapped square antiprismatic geometries, respectively. The crystal packing of the complexes have stabilized by one dimensional (1D) chains along the [001] direction to form intermolecular O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO hydrogen bonding. The molar conductance of the complexes in DMSO solution indicated that both compounds are ionic. The complexes had a good thermal stability. Under the UV-excitation, these complexes exhibited the red-shift emission.
    Matched MeSH terms: Anions/pharmacology; Anions/chemistry
  13. Jaafar J, Watanabe Y, Ikegami T, Miyamoto K, Tanaka N
    Anal Bioanal Chem, 2008 Aug;391(7):2551-6.
    PMID: 18458888 DOI: 10.1007/s00216-008-2063-3
    An anion exchange monolithic silica capillary column was prepared by surface modification of a hybrid monolithic silica capillary column prepared from a mixture of tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS). The surface modification was carried out by on-column copolymerization of N-[3-(dimethylamino)propyl]acrylamide methyl chloride-quaternary salt (DMAPAA-Q) with 3-methacryloxypropyl moieties bonded as an anchor to the silica surface to form a strong anion exchange stationary phase. The columns were examined for their performance in liquid chromatography (LC) and capillary electrochromatography (CEC) separations of common anions. The ions were separated using 50 mM phosphate buffer at pH 6.6. Evaluation by LC produced an average of 30,000 theoretical plates (33 cm column length) for the inorganic anions and nucleotides. Evaluation by CEC, using the same buffer, produced enhanced chromatographic performance of up to ca. 90,000 theoretical plates and a theoretical plate height of ca. 4 mum. Although reduced efficiency was observed for inorganic anions that were retained a long time, the results of this study highlight the potential utility of the DMAPAA-Q stationary phase for anion separations.
    Matched MeSH terms: Anions/isolation & purification; Anions/chemistry
  14. Isa IM, Ab Ghani S
    Talanta, 2007 Jan 15;71(1):452-5.
    PMID: 19071326 DOI: 10.1016/j.talanta.2006.04.034
    This paper describes the preparation of and experimentation undertaken by heterogeneous chitosan membrane as ion selective electrode for glutamate ion. The linearity response was obtained in the range of 1.0x10(-5) to 1.0x10(-1)M with a detection limit of 1.0x10(-6)M. The performance of the electrode was found in the pH range of 4.0-8.0 at temperature 25+/-3 degrees C. The response time was at 5-35s and was useful for a period of more than 4 months. The selectivity values towards some anions indicates good selectivity over a number of interfering anions. No significant improvement of membrane performance over additional of plasticizers such as 2-NPOE, BEHA and DOPP. The electrodes gave sufficient Nernstian responses with the exception of membrane with 2-NPOE.
    Matched MeSH terms: Anions
  15. Rehman MA, Yusoff I, Alias Y
    J Hazard Mater, 2015 Dec 15;299:316-24.
    PMID: 26143194 DOI: 10.1016/j.jhazmat.2015.06.030
    A series of doped and un-doped magnetic adsorbents CuCexFe2-xO4 (x=0.0-0.5) for fluoride were prepared with the micro-emulsion method. Fluoride adsorption was optimized for solution pH, temperature, contact time, and initial concentration and was monitored via normal phase ion chromatography (IC). The effect of concomitant anions was also explored to perform and simulate competitive fluoride adsorption in real water samples. Optimal adsorption was discovered by a simple quadratic model based on central composite design (CCD) and the response surface method (RSM). The adsorption, electrochemical and magnetic properties were compared between doped and un-doped ferrites. Doped ferrites (x=0.1-0.5) were found to be superior to un-doped ferrites (x=0) regarding the active sites, functional groups and fluoride adsorption. The characterization, optimization and application results of the doped ferrites indicated enhanced fluoride adsorption and easy separation with a simple magnet.
    Matched MeSH terms: Anions
  16. Uddin S, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Chem Commun (Camb), 2020 Oct 19.
    PMID: 33073787 DOI: 10.1039/d0cc04491a
    We report a new series of lipid-based biocompatible ionic liquids (LBILs) consisting of the long-chain phosphonium compound 1,2-dimyristoyl-sn-glycero-3-ethyl-phosphatidylcholine as the cation and the long-chain fatty acids stearic acid, oleic acid, or linoleic acid as anions. These materials were found to be completely miscible with many polar and nonpolar organic solvents as well as dispersible in water. These LBILs also exhibited excellent biocompatibility with an artificial three-dimensional human epidermis model.
    Matched MeSH terms: Anions
  17. Payus CM, Jikilim C, Sentian J
    Heliyon, 2020 Sep;6(9):e04997.
    PMID: 33005801 DOI: 10.1016/j.heliyon.2020.e04997
    The purposes of this research were to study the characteristics chemistry of pH, anions and cations in rainwater, and to identify the possible sources that contributing to the acid precipitation during southwest monsoon season with occurrence of extreme drought event. During the southwest monsoon season, it normally occurs along with haze phenomenon that every year will hit Southeast Asia. This condition will aggravate with high acidic particles in the atmosphere due to the prolonged drought. The analysed parameters which involved pH, anions (NO3-, SO42- and Cl-) and cations (Ca2+, Mg2+, Na+ and K+) were analysed using pH meter, Hach DR 2800, argentometric method and ICP-OES. From the findings, it showed that acid rain occurred during the southwest monsoon season with the range of pH values from 4.95 ± 0.13 to 6.40 ± 0.03 and the total average of pH 5.71 ± 0.32. Anions NO3-, SO42- and Cl- were found to be the dominant compositions of the acid rain occurrences with higher concentrations detected. In overall, rural area recorded with higher acidity of precipitation at total average of pH 5.54 ± 0.39 compared to urban area at pH 5.77 ± 0.26. Rural area surprisingly recorded higher frequency occurrences of acid rain with pH lesser than 5.6 and below compared to urban area. As for public health and safety, all rainwater samples during the acid rain event were found exceeded the allowable limits of NWQS and WHO standards, that shown not suitable for skin contact, recreational purposes even for drinking purposes.
    Matched MeSH terms: Anions
  18. Seng LY, Al-Shaikh M, Hascakir B
    ACS Omega, 2020 Oct 27;5(42):27383-27392.
    PMID: 33134701 DOI: 10.1021/acsomega.0c00193
    The objective of this study is to investigate the intermolecular interactions between the surfactants and the fractions of heavy crude oils. Two possible interactions were considered; polar and ionic interactions for two heavy crude oil-surfactant systems, and 20 surfactant-steam flooding tests were conducted on these crudes by testing nine surfactants (three anionic, three cationic, and three nonionic) with different tail lengths and charged head groups. The performance differences observed in each core flood were discussed through the additional analyses. To explain polar interactions, the pseudo blends of crude oil fractions (fractionation of saturates, aromatics, resins, and asphaltenes) were exposed to the surfactant solutions under vapor and liquid water conditions and their mutual interactions were visualized under an optical microscope. To explain ionic interactions, the charges on asphaltene surfaces were analyzed by zeta potential measurements before and after core flood tests on both the produced and the residual oil asphaltenes. The addition of surfactants improved the oil recovery when compared to steam injection alone. However, different oil recoveries were obtained with different surfactants. Further analyses showed that asphaltenes are key and the interaction of asphaltenes with other crude oil fractions or surfactants determines the success of surfactant-steam processes. The polar interactions favor the emulsion formation more; hence, if the polar interactions are more dominant than the ion interactions in the overall crude oil-surfactant system, the surfactant flooding process into heavy oil reservoir became more successful.
    Matched MeSH terms: Anions
  19. Hau, E.H., Amiza, M.A., Zainol, M.K., Mohd Zin, Z.
    MyJurnal
    This study aimed to determine the best parameters (types of buffer, hydrolysis time and enzyme concentration) used to produce good quality of liquid protein hydrolysate from Yellowstripe scad in terms of high yield, protein content and concentration. The choice of buffer (sodium or potassium buffer), hydrolysis time (1 h, 2 h, 3 h or 4 h) and enzymes concentrations (0.5%, 1.0%, 1.5% and 2.0%) were investigated. The results obtained from two way ANOVA showed that these parameters had significant difference (p
    Matched MeSH terms: Anions
  20. Jaeger L, Uning R, Mohd Hanif N, Latif MT
    Bull Environ Contam Toxicol, 2019 Sep;103(3):374-379.
    PMID: 31230135 DOI: 10.1007/s00128-019-02662-6
    This study determines the levels of surfactants at 12 stations located in the Melaka River Estuary. This river estuary is located within a tourism area of Melaka Historical City. The concentrations of anionic and cationic surfactants in the sea surface microlayer (SML) and sub-surface water (SSW) were determined by using two colorimetric methods, methylene blue active substances (MBASs) and disulphine blue active substances (DBASs), respectively. The results showed that cationic surfactants as DBAS (ranging between 0.19 and 0.25 μmol L-1) dominated the concentrations of surfactants in SML. The enrichment factor (Ef) between MBAS and DBAS in the SML and SSW ranged between 1.0 and 2.0, and 1.0 to 1.4, respectively. There was no significant correlation (p > 0.05) between MBAS and DBAS for both SML and SSW. Nevertheless, there were strong correlations (p 
    Matched MeSH terms: Anions
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links