Aluminium phosphide (ALP) is highly toxic and poisoning can result in high mortality rates. A 26-year-old female who allegedly ingested a toxic dose of ALP presented with vomiting and diarrhoea. She developed cardiac arrest with refractory pulseless ventricular tachycardia. Despite aggressive resuscitation, she succumbed to death seven hours following ingestion. In cases like this, a better outcome can be achieved with early arrival, prompt diagnosis, aggressive resuscitation and intensive monitoring.
Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.
Direct recycling of aluminum waste is crucial in sustainable manufacturing to mitigate environmental impact and conserve resources. This work was carried out to study the application of hot press forging (HPF) in recycling AA6061 aluminum chip waste, aiming to optimize operating factors using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Genetic algorithm (GA) strategy to maximize the strength of recycled parts. The experimental runs were designed using Full factorial and RSM via Minitab 21 software. RSM-ANN models were employed to examine the effect of factors and their interactions on response and to predict output, while GA-RSM and GA-ANN were used for optimization. The chips of different morphology were cold compressed into billet form and then hot forged. The effect of varying forging temperature (Tp, 450-550°C), holding time (HT, 60-120 minutes), and chip surface area to volume ratio (AS:V, 15.4-52.6 mm2/mm3) on ultimate tensile strength (UTS) was examined. Maximum UTS (237.4 MPa) was achieved at 550°C, 120 minutes and 15.4 mm2/mm3 of chip's AS: V. The Tp had the largest contributing effect ratio on the UTS, followed by HT and AS:V according to ANOVA analysis. The proposed optimization process suggested 550°C, 60 minutes, and 15.4 mm2 as the optimal condition yielding the maximum UTS. The developed models' evaluation results showed that ANN (with MSE = 1.48%) outperformed RSM model. Overall, the study promotes sustainable production by demonstrating the potential of integrating RSM and ML to optimize complex manufacturing processes and improve product quality.
The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.
P-type transparent conductive oxide of copper aluminum oxide (CuAlO2) thin films were prepared by using sol-gel method with nitrate solutions as starting precursor. Copper nitrate and aluminum nitrate were selected as raw materials that provide the copper and aluminum source. The CuAlO2 thin films were deposited on pre-cleaned silicon substrate by spin-coating technique. To study of phase formation of CuAlO2, as prepared sample was dried and subjected to heat treatment at various temperatures. The heat-treated samples were characterized by x-ray diffraction (XRD) and energy dispersive x-ray (EDX). From XRD analysis result found that CuAlO2 phase was formed after annealing at 1100 o C for 4 hrs. EDX result of annealed sample at 1100 o C shows composition of Cu and Al that indicate the possibility of forming CuAlO2.
A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.
The ability of aluminum coagulant extracted from red earth to treat Terasil Red R (disperse) and Cibacron Red R (reactive) synthetic dye wastewater was studied. The effects of extractant concentration, soil-to-volume of extractant ratio, and the types of extracting agents (NaOH vs. KCl) on the concentration of aluminum extracted were also investigated. In addition, the efficiency of extracted aluminum was compared with aluminum sulfate, in terms of its capability to reduce the chemical oxygen demand (COD) and to remove synthetic color. Factorial design was applied to determine the effect of selected factors on the amount of aluminum extracted from red earth (i.e., pH, dose of coagulant, type of coagulant on COD reduction, and color removal). It was found that only selected factors exhibited a significant effect on the amount of aluminum extracted from red earth. It was also determined that all factors and their interactions exhibited a significant effect on COD reduction and color removal when applying the extracted aluminum in a standard coagulation process. The results were also compared to aluminum sulfate. Furthermore, NaOH was found to be a better extractant of aluminum in red earth than KCl. Therefore, the best extracting conditions for both extractants were as follows: 2 M NaOH and in a 1:5 (soil/volume of extractant) ratio; 1 M KCl and 1:5 ratio. In treating synthetic dye wastewater, the extracted coagulant showed comparable treatment efficiency to the commercial coagulant. The extracted coagulant was able to reduce the COD of the dispersed dye by 85% and to remove 99% of the color of the dispersed dye, whereas the commercial coagulant reduced 90% of the COD and removed 99% of the color of the dispersed dye. Additionally, the extracted coagulant was able to reduce the COD of the reactive dye by 73% and to remove 99% of the color of the reactive dye. However, the commercial coagulant managed to reduce the COD of the reactive dye by 94% and to remove 96% of the color for the reactive dye.
sugar industry is one of the industries that produce a high amount of
pollutant since its wastewater contains high amount of organic material, biochemical
oxygen demand (bod) and chemical oxygen demand (cod). if this waste is
discharged without a proper treatment into the watercourse, it can cause problem to aquatic
life and environment. for the primary treatment process, sugar wastewater can be treated
by using chemical precipitation method which involves coagulation process. currently,
ferric chloride has been used as the coagulant but it consumes more alkalinity and
corrosive. in this study, the suitable coagulant to be used to treat the wastewater from sugar
industry and the optimum conditions to achieve high percentage removal of cod was
determined. the characteristic of the wastewater was firstly determined. then, the most
suitable coagulant to be used for the treatment was studied by determining their efficiency
to reduce cod and tss in the wastewater at different dosages. aluminium sulphate
(alum), ferric chloride and polyaluminium chloride (pac) were chosen to be studied for
suitable coagulant. The optimum condition of the coagulant (ph, coagulant dosage, fast
mixing speed) was determined by using design expert software. results showed that alum
can be used to effectively remove 42.9% of cod and 100% of tss at high dosage (50
mg/l). the optimum condition of alum was at ph 5.2, 10 mg/l of alum and 250 rpm of
mixing speed. this shows that at optimum condition, alum can be used to treat wastewater
from sugar industry.
Nowadays Silicone Rubber (SiR) is recommended in high voltage cable accessories fabrication as it offers excellent electrical and mechanical properties. Electrical tree is one of the phenomenon which contributes to the main factor of SiR insulation breakdown. Recently, a new approach has been applied in order to enhance the insulation strength properties by introducing nano filler in undoped material. Thus, this paper presents the influence of nano-alumina and halloysite nanoclay on electrical tree growth in SiR at 0, 1 vol%, 2 vol% and 3 vol% concentration. The electrical tree growth was investigated at 8kVrms after tree inception voltage (TIV) within 30 minutes under room temperature. The results show reductions of electrical tree growth speed and accumulate damage (%) up to 2 vol% nano-alumina and up to 3 vol% halloysite nanoclay. Nevertheless the presence of 3 vol% nano-alumina in SiR leads to the faster electrical tree growth rate and the worst accumulate damage within 1 minute of electrical tree growth process.
An air fin cooler system consists of a tube bundle that is used to cool the various processing fluids in process industries that utilizes air as a cooling medium. The said tubes failed when exposed to corrosive environment(s). Tubes located at the bottom row of the air fin cooler were corroded as a result of exposure to rain water, brought in by induced air when the wind blows. The tube material is A179 Carbon steel. Two tubes, namely Tube A and Tube B along with an aluminum fin in each tube were investigated. A leak was observed on tube A, probably due to Corrosion Under Deposit mechanism. A general corrosion attack was observed at tube B, and macroscopic analysis showed that the corrosion occurred along the grain boundaries, which consist of ferrite and pearlite. Microanalysis showed that the corrosion product on the outer surface of the tube consists of Fe, O, S and Cl elements. It is concluded that the humid environment contains corrosive elements such as S and Cl. EDAX analysis on the fin showed that the material is pure aluminum. However, the aluminum was corroded by galvanized corrosion and produced brittle Al2O3 as a result.
A study of wear behaviour on anodised PM aluminium matrix composites (AMC) reinforced with Saffil™ alumina short fibres was done. AMC was fabricated by powder metallurgy methods (PM) with using Al flake powders and Saffil™ alumina short fibres. AMC reinforced with 15 wt % Saffil¥ alumina short fibre was selected because it showed optimum mechanical and physical properties. Sulphuric acid anodising process was performed and the objective is to obtain suitable parameters of sulphuric acid concentration, anodising voltage and anodising time on MMC. The study of anodising process was carried out with various sulphuric acid concentrations (from 0 to 20 % volume), anodising voltage (10 V to 20 V) and anodising time (from 0 to 60 minutes) at room temperature. Scanning electron microscope (SEM) was used to investigate coating morphology and thickness. From the research, anodising voltage of 18 V and 15 % vol H2SO4 in anodising time of 60 minutes were suitable parameters for sulphuric acid anodising of this AMC. SEM showed the coating thickness around 20 Pm. From the reserch, it was found that H2SO4 anodising was able to give good coating to MMC.
Anion clay hydrotalcite MgA1C0 3 with a Mg/A1 molar ratio of 3:1 was synthesized by co-precipitation at room temperature and pressure. The physicochemical properties were evaluated using Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared (FTIR) spectroscopy and Thermogravimetric Analysis (TGA). The efficacy of anion clay hydrotalcite in the removal ofCcf- from aqueous solutions was investigated with respect to contact time, initial concentration, pH, adsorbent dosage and temperature. The Cd2- removal increased with the increased in contact time, adsorbent dosage, pH and initial concentration. Adsorption decreases with increasing initial concentration and temperature, for which the latter is indicative of an exothermic process. The equilibrium adsorption capacity of MgA1C0 3 was evaluated using linear Langmuir and Freundlich isotherms with respect to the separation factor, RL.
For decades, water treatment plants in Malaysia have widely employed aluminium-based coagulant for the removal of colloidal particles in surface water. This generates huge amount of by-product, known as sludge that is either reused for land applications or disposed to landfills. As sludge contains high concentration of aluminium, both can pose severe environmental issues. Therefore, this study explored the potential to recover aluminium from water treatment sludge using acid leaching process. The evaluation of aluminium recovery efficiency was conducted in two phases. The first phase used the one factor at a time (OFAT) approach to study the effects of acid concentration, solid to liquid ratio, temperature and heating time. Meanwhile, second phase emphasized on the optimization of aluminium recovery using Response Surface Methodology (RSM). OFAT results indicated that aluminium recovery increased with the rising temperature and heating time. Acid concentration and solid to liquid ratio, however, showed an initial increment followed by reduction of recovery with increasing concentration and ratio. Due to the solidification of sludge when acid concentration exceeded 4 M, this variable was fixed in the optimization study. RSM predicted that aluminium recovery can achieve 70.3% at optimal values of 4 M, 20.9%, 90 °C and 4.4 h of acid concentration, solid to liquid ratio, temperature and heating time, respectively. Experimental validation demonstrated a recovery of 68.8 ± 0.3%. The small discrepancy of 2.2 ± 0.4% between predicted and validated recovery suggests that RSM was a suitable tool in optimizing aluminium recovery conditions for water treatment sludge.
In this study, the effects of addition of ammonium and aluminium-based hardeners into
urea formaldehyde resin (UF) on the physico-mechanical properties and formaldehyde
emission of the rubberwood particleboard were investigated. Four types of hardeners,
namely ammonium chloride (AC), ammonium sulphate (AS), aluminium chloride (AlC)
and aluminium sulphate (AlS), were added into UF resin. The acidity, gelation time,
viscosity and free formaldehyde content of the UF/hardener mixtures were determined.
Particleboard made with the UF/hardener mixtures were tested for physico-mechanical
properties and formaldehyde emission. The pH values of the resin after addition of
aluminium-based hardeners were higher and resulted in higher viscosity and shorter
gelation time. Consequently, despite lower formaldehyde emission was recorded, the
physico-mechanical properties of the resulted particleboard were inferior compared to
that of ammonium-based hardeners. The best quality particleboard in terms of mechanical,
physical and formaldehyde emission were obtained from the particleboard made with AS,
followed by AC.
Skin crack defects can develop in sandwich honeycomb composite structures during service life due to static and impact loads. In this study, the fracture behavior of sandwich honeycomb composite (SHC) beams containing crack at the skin was investigated experimentally and numerically under four-point loading. Three different arrangements of unidirectional (UD) carbon fiber composite and the triaxially woven (TW) fabric were considered for the skins. The presence of a 10 mm crack at mid-span of the top skin, mid-span of the bottom skin, and mid-way between load and support of the top skin, respectively, were considered. Failure load equations of the load initiating the skin crack extension were analytically derived and then numerically developed using the J-integral approach. The crack extension failure mode dominated all cracked specimens except those with low-stiffness skin which were controlled by the compressive skin debonding and core shear failures.
The performance of optically stimulated luminescence dosimeters (OSLDs, Al2O3:C) was evaluated in terms of the operational quantity of HP(10) in Co-60 external beam teletherapy unit. The reproducibility, signal depletion, and dose linearity of each dosimeter was investigated. For ten repeated readouts, each dosimeter exposed to 50mSv was found to be reproducible below 1.9 ± 3% from the mean value, indicating good reader stability. Meanwhile, an average signal reduction of 0.5% per readout was found. The dose response revealed a good linearity within the dose range of 5-50mSv having nearly perfect regression line with R2 equals 0.9992. The accuracy of the measured doses were evaluated in terms of operational quantity HP(10), wherein the trumpet curve method was used respecting the 1990 International Commission on Radiological Protection (ICRP) standard. The accuracy of the overall measurements from all dosimeters was discerned to be within the trumpet curve and devoid of outlier. It is established that the achieved OSL Al2O3:C dosimeters are greatly reliable for equivalent dose assessment.
Bauxite wastewater creates soil contamination and produces toxic effects on human health such as respiratory and skin rash problems. In this study, we investigated the phytoremediation ability of Jatropha curcas to remove bauxite wastewater from soil. Pot experiments were conducted to investigate the bauxite wastewater on the phytoremediation potential of J. curcas grown in contaminated soils. J. curcas exhibited a significant increase in plant growth leaf, root activity, plant height, and plant shoot when grown in bauxite contaminated soils compared with J. curcas grown in uncontaminated soils after 30 d treatment. Under bauxite exposure, a higher aluminium removal (88.5%) was observed in soils planted with J. curcas than unplanted soils (39.6%). The bioconcentration factor was also found to be 5.62, indicating that J. curcas have great tolerance and hyperaccumulator of aluminium under high aluminium concentrations and are capable of phytoextraction of soil contaminated with bauxite wastewater.
In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica. The binding sites are mostly along Mt edges. The addition of Mg2+ cations led to the separation of DNA fibers into separate molecules, which bound mainly to the edge joints of the Mt particles according to our reactivity estimations. After the incubation of DNA with Mg2+, the DNA fibers were capable of wrapping around the Mt particles and were weakly bound to the Mt edge surfaces. The reversible sorption of nucleic acids onto the Mt surface allows it to be used for both RNA and DNA isolation for further reverse transcription and polymerase chain reaction (PCR). Our results show that the strongest binding sites for DNA are the edge joints of Mt particles.
In municipal solid waste (MSW) landfills, biodegradation of the organic MSW fraction results in elevated waste and basal liner temperatures which have the potential to cause the clay component of the basal liner to experience severe moisture loss over time and eventually undergo desiccation cracking. Cracking of the basal liner's clay component would result in an uncontrolled release of contaminants into the surrounding environment and ultimately give rise to a variety of major environmental concerns. Accordingly, this study examined the variation of temperature-moisture profiles along the depth of a compacted clay liner (CCL) exposed to different constant elevated waste temperatures (CETs) in the absence and presence of two heat reduction techniques, respectively. Rockwool insulation layers with varying thicknesses and galvanized steel cooling pipes with varying flowrates were introduced separately as the two heat reduction techniques. Introduction of both techniques led to a significant attenuation of the temperature rise and desiccation experienced by the CCL in the face of different CETs. An increase in rockwool thickness increments led to a progressive reduction of CCL temperature, while an increase in flow rate under turbulent condition did not have a significant influence on the temperature and desiccation reduction of the CCL. Nevertheless, the present study certainly highlights the potential of the two proposed heat reduction techniques to minimize desiccation and consequently increase the service life of CCLs exposed to different elevated temperatures in MSW landfills.
A multi-gate n-type In₀.₅₃Ga₀.₄₇As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm(2)/Vs are achieved for the gate length and width of 0.2 µm and 30 µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10(-8) A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.