METHODS: In this randomized, double-blind, time-to-event trial, 143 adults were randomly assigned in a 2:1 ratio to receive either intravenous eculizumab (at a dose of 900 mg weekly for the first four doses starting on day 1, followed by 1200 mg every 2 weeks starting at week 4) or matched placebo. The continued use of stable-dose immunosuppressive therapy was permitted. The primary end point was the first adjudicated relapse. Secondary outcomes included the adjudicated annualized relapse rate, quality-of-life measures, and the score on the Expanded Disability Status Scale (EDSS), which ranges from 0 (no disability) to 10 (death).
RESULTS: The trial was stopped after 23 of the 24 prespecified adjudicated relapses, given the uncertainty in estimating when the final event would occur. The mean (±SD) annualized relapse rate in the 24 months before enrollment was 1.99±0.94; 76% of the patients continued to receive their previous immunosuppressive therapy during the trial. Adjudicated relapses occurred in 3 of 96 patients (3%) in the eculizumab group and 20 of 47 (43%) in the placebo group (hazard ratio, 0.06; 95% confidence interval [CI], 0.02 to 0.20; P<0.001). The adjudicated annualized relapse rate was 0.02 in the eculizumab group and 0.35 in the placebo group (rate ratio, 0.04; 95% CI, 0.01 to 0.15; P<0.001). The mean change in the EDSS score was -0.18 in the eculizumab group and 0.12 in the placebo group (least-squares mean difference, -0.29; 95% CI, -0.59 to 0.01). Upper respiratory tract infections and headaches were more common in the eculizumab group. There was one death from pulmonary empyema in the eculizumab group.
CONCLUSIONS: Among patients with AQP4-IgG-positive NMOSD, those who received eculizumab had a significantly lower risk of relapse than those who received placebo. There was no significant between-group difference in measures of disability progression. (Funded by Alexion Pharmaceuticals; PREVENT ClinicalTrials.gov number, NCT01892345; EudraCT number, 2013-001150-10.).
METHODS: Using a 2-by-2-by-2 factorial design, we randomly assigned participants without cardiovascular disease who had an elevated INTERHEART Risk Score to receive a polypill (containing 40 mg of simvastatin, 100 mg of atenolol, 25 mg of hydrochlorothiazide, and 10 mg of ramipril) or placebo daily, aspirin (75 mg) or placebo daily, and vitamin D or placebo monthly. We report here the outcomes for the polypill alone as compared with matching placebo, for aspirin alone as compared with matching placebo, and for the polypill plus aspirin as compared with double placebo. For the polypill-alone and polypill-plus-aspirin comparisons, the primary outcome was death from cardiovascular causes, myocardial infarction, stroke, resuscitated cardiac arrest, heart failure, or revascularization. For the aspirin comparison, the primary outcome was death from cardiovascular causes, myocardial infarction, or stroke. Safety was also assessed.
RESULTS: A total of 5713 participants underwent randomization, and the mean follow-up was 4.6 years. The low-density lipoprotein cholesterol level was lower by approximately 19 mg per deciliter and systolic blood pressure was lower by approximately 5.8 mm Hg with the polypill and with combination therapy than with placebo. The primary outcome for the polypill comparison occurred in 126 participants (4.4%) in the polypill group and in 157 (5.5%) in the placebo group (hazard ratio, 0.79; 95% confidence interval [CI], 0.63 to 1.00). The primary outcome for the aspirin comparison occurred in 116 participants (4.1%) in the aspirin group and in 134 (4.7%) in the placebo group (hazard ratio, 0.86; 95% CI, 0.67 to 1.10). The primary outcome for the polypill-plus-aspirin comparison occurred in 59 participants (4.1%) in the combined-treatment group and in 83 (5.8%) in the double-placebo group (hazard ratio, 0.69; 95% CI, 0.50 to 0.97). The incidence of hypotension or dizziness was higher in groups that received the polypill than in their respective placebo groups.
CONCLUSIONS: Combined treatment with a polypill plus aspirin led to a lower incidence of cardiovascular events than did placebo among participants without cardiovascular disease who were at intermediate cardiovascular risk. (Funded by the Wellcome Trust and others; TIPS-3 ClinicalTrials.gov number, NCT01646437.).
METHODS: This analysis includes 137,851 participants between the ages of 35 and 70 years living on five continents, with a median follow-up of 9.5 years. We used country-specific food-frequency questionnaires to determine dietary intake and estimated the glycemic index and glycemic load on the basis of the consumption of seven categories of carbohydrate foods. We calculated hazard ratios using multivariable Cox frailty models. The primary outcome was a composite of a major cardiovascular event (cardiovascular death, nonfatal myocardial infarction, stroke, and heart failure) or death from any cause.
RESULTS: In the study population, 8780 deaths and 8252 major cardiovascular events occurred during the follow-up period. After performing extensive adjustments comparing the lowest and highest glycemic-index quintiles, we found that a diet with a high glycemic index was associated with an increased risk of a major cardiovascular event or death, both among participants with preexisting cardiovascular disease (hazard ratio, 1.51; 95% confidence interval [CI], 1.25 to 1.82) and among those without such disease (hazard ratio, 1.21; 95% CI, 1.11 to 1.34). Among the components of the primary outcome, a high glycemic index was also associated with an increased risk of death from cardiovascular causes. The results with respect to glycemic load were similar to the findings regarding the glycemic index among the participants with cardiovascular disease at baseline, but the association was not significant among those without preexisting cardiovascular disease.
CONCLUSIONS: In this study, a diet with a high glycemic index was associated with an increased risk of cardiovascular disease and death. (Funded by the Population Health Research Institute and others.).
METHODS: In an international, randomized, single-blind trial, we compared polymer-based zotarolimus-eluting stents with polymer-free umirolimus-coated stents in patients at high bleeding risk. After PCI, patients were treated with 1 month of dual antiplatelet therapy, followed by single antiplatelet therapy. The primary outcome was a safety composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year. The principal secondary outcome was target-lesion failure, an effectiveness composite of death from cardiac causes, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. Both outcomes were powered for noninferiority.
RESULTS: A total of 1996 patients at high bleeding risk were randomly assigned in a 1:1 ratio to receive zotarolimus-eluting stents (1003 patients) or polymer-free drug-coated stents (993 patients). At 1 year, the primary outcome was observed in 169 of 988 patients (17.1%) in the zotarolimus-eluting stent group and in 164 of 969 (16.9%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% confidence interval [CI], 3.5; noninferiority margin, 4.1; P = 0.01 for noninferiority). The principal secondary outcome was observed in 174 patients (17.6%) in the zotarolimus-eluting stent group and in 169 (17.4%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% CI, 3.5; noninferiority margin, 4.4; P = 0.007 for noninferiority).
CONCLUSIONS: Among patients at high bleeding risk who received 1 month of dual antiplatelet therapy after PCI, use of polymer-based zotarolimus-eluting stents was noninferior to use of polymer-free drug-coated stents with regard to safety and effectiveness composite outcomes. (Funded by Medtronic; ONYX ONE ClinicalTrials.gov number, NCT03344653.).
METHODS: We conducted a pragmatic, multicenter, single-blind, controlled trial at 36 centers in 13 countries. Patients scheduled to undergo elective CABG were randomly assigned to an intraoperative anesthetic regimen that included a volatile anesthetic (desflurane, isoflurane, or sevoflurane) or to total intravenous anesthesia. The primary outcome was death from any cause at 1 year.
RESULTS: A total of 5400 patients were randomly assigned: 2709 to the volatile anesthetics group and 2691 to the total intravenous anesthesia group. On-pump CABG was performed in 64% of patients, with a mean duration of cardiopulmonary bypass of 79 minutes. The two groups were similar with respect to demographic and clinical characteristics at baseline, the duration of cardiopulmonary bypass, and the number of grafts. At the time of the second interim analysis, the data and safety monitoring board advised that the trial should be stopped for futility. No significant difference between the groups with respect to deaths from any cause was seen at 1 year (2.8% in the volatile anesthetics group and 3.0% in the total intravenous anesthesia group; relative risk, 0.94; 95% confidence interval [CI], 0.69 to 1.29; P = 0.71), with data available for 5353 patients (99.1%), or at 30 days (1.4% and 1.3%, respectively; relative risk, 1.11; 95% CI, 0.70 to 1.76), with data available for 5398 patients (99.9%). There were no significant differences between the groups in any of the secondary outcomes or in the incidence of prespecified adverse events, including myocardial infarction.
CONCLUSIONS: Among patients undergoing elective CABG, anesthesia with a volatile agent did not result in significantly fewer deaths at 1 year than total intravenous anesthesia. (Funded by the Italian Ministry of Health; MYRIAD ClinicalTrials.gov number, NCT02105610.).
METHODS: In this randomized, double-blind, phase 3 trial, we assigned, in a 2:1 ratio, adults with transfusion-dependent β-thalassemia to receive best supportive care plus luspatercept (at a dose of 1.00 to 1.25 mg per kilogram of body weight) or placebo for at least 48 weeks. The primary end point was the percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval. Other efficacy end points included reductions in the transfusion burden during any 12-week interval and results of iron studies.
RESULTS: A total of 224 patients were assigned to the luspatercept group and 112 to the placebo group. Luspatercept or placebo was administered for a median of approximately 64 weeks in both groups. The percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval was significantly greater in the luspatercept group than in the placebo group (21.4% vs. 4.5%, P<0.001). During any 12-week interval, the percentage of patients who had a reduction in transfusion burden of at least 33% was greater in the luspatercept group than in the placebo group (70.5% vs. 29.5%), as was the percentage of those who had a reduction of at least 50% (40.2% vs. 6.3%). The least-squares mean difference between the groups in serum ferritin levels at week 48 was -348 μg per liter (95% confidence interval, -517 to -179) in favor of luspatercept. Adverse events of transient bone pain, arthralgia, dizziness, hypertension, and hyperuricemia were more common with luspatercept than placebo.
CONCLUSIONS: The percentage of patients with transfusion-dependent β-thalassemia who had a reduction in transfusion burden was significantly greater in the luspatercept group than in the placebo group, and few adverse events led to the discontinuation of treatment. (Funded by Celgene and Acceleron Pharma; BELIEVE ClinicalTrials.gov number, NCT02604433; EudraCT number, 2015-003224-31.).
METHODS: In a phase 2 trial, we randomly assigned patients with a GPP flare in a 2:1 ratio to receive a single 900-mg intravenous dose of spesolimab or placebo. Patients in both groups could receive an open-label dose of spesolimab on day 8, an open-label dose of spesolimab as a rescue medication after day 8, or both and were followed to week 12. The primary end point was a Generalized Pustular Psoriasis Physician Global Assessment (GPPGA) pustulation subscore of 0 (range, 0 [no visible pustules] to 4 [severe pustulation]) at the end of week 1. The key secondary end point was a GPPGA total score of 0 or 1 (clear or almost clear skin) at the end of week 1; scores range from 0 to 4, with higher scores indicating greater disease severity.
RESULTS: A total of 53 patients were enrolled: 35 were assigned to receive spesolimab and 18 to receive placebo. At baseline, 46% of the patients in the spesolimab group and 39% of those in the placebo group had a GPPGA pustulation subscore of 3, and 37% and 33%, respectively, had a pustulation subscore of 4. At the end of week 1, a total of 19 of 35 patients (54%) in the spesolimab group had a pustulation subscore of 0, as compared with 1 of 18 patients (6%) in the placebo group (difference, 49 percentage points; 95% confidence interval [CI], 21 to 67; P<0.001). A total of 15 of 35 patients (43%) had a GPPGA total score of 0 or 1, as compared with 2 of 18 patients (11%) in the placebo group (difference, 32 percentage points; 95% CI, 2 to 53; P = 0.02). Drug reactions were reported in 2 patients who received spesolimab, in 1 of them concurrently with a drug-induced hepatic injury. Among patients assigned to the spesolimab group, infections occurred in 6 of 35 (17%) through the first week; among patients who received spesolimab at any time in the trial, infections had occurred in 24 of 51 (47%) at week 12. Antidrug antibodies were detected in 23 of 50 patients (46%) who received at least one dose of spesolimab.
CONCLUSIONS: In a phase 2 randomized trial involving patients with GPP, the interleukin-36 receptor inhibitor spesolimab resulted in a higher incidence of lesion clearance at 1 week than placebo but was associated with infections and systemic drug reactions. Longer and larger trials are warranted to determine the effect and risks of spesolimab in patients with pustular psoriasis. (Funded by Boehringer Ingelheim; Effisayil 1 ClinicalTrials.gov number, NCT03782792.).
METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.
RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.
CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).