Displaying publications 21 - 40 of 56 in total

Abstract:
Sort:
  1. Haque MA, Jantan I, Harikrishnan H, Abdul Wahab SM
    Planta Med, 2018 Nov;84(17):1255-1264.
    PMID: 29906814 DOI: 10.1055/a-0637-9936
    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF-κB, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF-κB, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF-α, IL-1β, and PGE2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF-κB activation by prompting p65, IκBα, and IKKα/β phosphorylation as well as IκBα degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF-κB, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF-α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses.
  2. Wang M, Chittiboyina AG, Parcher JF, Ali Z, Ford P, Zhao J, et al.
    Planta Med, 2019 Feb;85(3):185-194.
    PMID: 30440078 DOI: 10.1055/a-0782-0548
    The growing demand and commercial value of black pepper (Piper nigrum) has resulted in considerable interest in developing suitable and cost-effective methods for chemical characterization and quality evaluation purposes. In the current study, an extensive set of oil samples (n = 23) that were extracted by steam distillation from black pepper seeds was investigated to compare the chemical profiles of samples originating from nine major producing countries, as well as to identify potential chemical markers for quality evaluation. The twenty-two most abundant volatile compounds, mainly terpenes, in these oils were determined by conventional GC/MS analysis. Principal component analysis with this set of data revealed distinct clusters for samples that originated from China and Malaysia. Relatively low concentrations of sabinene (
  3. Razali NNM, Ng CT, Fong LY
    Planta Med, 2019 Nov;85(16):1203-1215.
    PMID: 31539918 DOI: 10.1055/a-1008-6138
    Centella asiatica, a triterpene-rich medicinal herb, is traditionally used to treat various types of diseases including neurological, dermatological, and metabolic diseases. A few articles have previously reviewed a broad range of pharmacological activities of C. asiatica, but none of these reviews focuses on the use of C. asiatica in cardiovascular diseases. This review aims to summarize recent findings on protective effects of C. asiatica and its active constituents (asiatic acid, asiaticoside, madecassic acid, and madecassoside) in cardiovascular diseases. In addition, their beneficial effects on conditions associated with cardiovascular diseases were also reviewed. Articles were retrieved from electronic databases such as PubMed and Google Scholar using keywords "Centella asiatica," "asiatic acid," "asiaticoside," "madecassic acid," and "madecassoside." The articles published between 2004 and 2018 that are related to the aforementioned topics were selected. A few clinical studies published beyond this period were also included. The results showed that C. asiatica and its active compounds possess potential therapeutic effects in cardiovascular diseases and cardiovascular disease-related conditions, as evidenced by numerous in silico, in vitro, in vivo, and clinical studies. C. asiatica and its triterpenes have been reported to exhibit cardioprotective, anti-atherosclerotic, antihypertensive, antihyperlipidemic, antidiabetic, antioxidant, and anti-inflammatory activities. In conclusion, more clinical and pharmacokinetic studies are needed to support the use of C. asiatica and its triterpenes as therapeutic agents for cardiovascular diseases. Besides, elucidation of the molecular pathways modulated by C. asiatica and its active constituents will help to understand the mechanisms underlying the cardioprotective action of C. asiatica.
  4. Al-Amin M, Eltayeb NM, Hossain CF, Khairuddean M, Fazalul Rahiman SS, Salhimi SM
    Planta Med, 2020 Apr;86(6):387-394.
    PMID: 32168546 DOI: 10.1055/a-1129-7026
    Zingiber montanum rhizomes are traditionally used for the treatment of numerous human ailments. The present study was carried out to investigate the inhibitory activity of the crude extract, chromatographic fractions, and purified compounds from Z. montanum rhizomes on the migration of MDA-MB-231 cells. The effect of the extract on cell migration was investigated by a scratch assay, which showed significant inhibition in a concentration-dependent manner. Vacuum liquid chromatography on silica gel afforded four fractions (Frs. 1 - 4), which were tested on cell migration in the scratch assay. Frs. 1 and 2 showed the most significant inhibition of MDA-MB-231 cell migration. The effect of the most potent fraction (Fr. 2) was further confirmed in a transwell migration assay. The study of Frs. 1 and 2 by gelatin zymography showed significant inhibition of MMP-9 enzyme activity. Chromatographic separation of Frs. 1 and 2 afforded buddledone A (1: ), zerumbone (2: ), (2E,9E)-6-methoxy-2,9-humuradien-8-one (3: ), zerumbone epoxide (4: ), stigmasterol (5: ), and daucosterol (6: ). In a cell viability assay, compounds 1:  - 4: inhibited the viability of MDA-MB-231 cells in a concentration-dependent manner. The study of buddledone A (1: ) and zerumbone epoxide (4: ) on cell migration revealed that 4: significantly inhibited the migration of MDA-MB-231 cells in both scratch and transwell migration assays. The results of the present study may lead to further molecular studies behind the inhibitory activity of zerumbone epoxide (4: ) on cell migration and support the traditional use of Z. montanum rhizomes for the treatment of cancer.
  5. Porter GC, Safii SH, Medlicott NJ, Duncan WJ, Tompkins GR, Coates DE
    Planta Med, 2021 Mar;87(3):253-266.
    PMID: 33434939 DOI: 10.1055/a-1330-8765
    Manuka oil, an essential oil derived from the Leptospermum scoparium, has been traditionally used for wound care and as a topical antibacterial, antifungal, and anti-inflammatory. However, the essential oil is not well retained at mucosal sites, such as the oral cavity, where the benefits of the aforementioned properties could be utilized toward the treatment of persistent biofilms. Within this study, L. scoparium essential oil was incorporated into a semisolid emulsion for improved delivery. The safety profile of L. scoparium essential oil on human gingival fibroblasts was determined via cell viability, cytotoxicity, and caspase activation. The minimal bactericidal concentration of L. scoparium essential oil was determined, and the emulsion's antibiofilm effects visualized using confocal laser scanning microscopy. L. scoparium essential oil demonstrated a lower IC50 (0.02% at 48 h) when compared to the clinical control chlorhexidine (0.002% at 48 h) and displayed lower cumulative cytotoxicity. Higher concentrations of L. scoparium essential oil (≥ 0.1%) at 6 h resulted in higher caspase 3/7 activation, suggesting an apoptotic pathway of cell death. A minimal bactericidal concentration of 0.1% w/w was observed for 6 oral bacteria and 0.01% w/v for Porphyromonas gingivalis. Textural and rheometric analysis indicated increased stability of emulsion with a 1 : 3 ratio of L. scoparium essential oil: Oryza sativa carrier oil. The optimized 5% w/w L. scoparium essential oil emulsion showed increased bactericidal penetrative effects on Streptococci gordonii biofilms compared to oil alone and to chlorhexidine controls. This study has demonstrated the safety, formulation, and antimicrobial activity of L. scoparium essential oil emulsion for potential antibacterial applications at mucosal sites.
  6. Said IM, Chun NC, Houghton PJ
    Planta Med, 1991 Aug;57(4):398.
    PMID: 17226178
  7. Zakaria MB, Saito I, Yao XK, Wang RJ, Matsuura T
    Planta Med, 1989 Oct;55(5):477-8.
    PMID: 17262463
    Fibraurin, chasmanthin, and palmarin were isolated from the stems of FIBRAUREA CHLOROLEUCA, Fam. Menispermaceae. The structure of the minor constituent, palmarin, was determined by X-ray crystallographic analysis.
  8. Balz JP, Das NP
    Planta Med, 1979 Jun;36(2):174-7.
    PMID: 461570
  9. Lee DW, Tan GS, Liew FY
    Planta Med, 1977 Feb;31(1):83-93.
    PMID: 840935
  10. Rahmani M, Toia RF, Croft KD
    Planta Med, 1995 Oct;61(5):487-8.
    PMID: 7480216
  11. Zèches M, Mesbah K, Loukaci A, Richard B, Schaller H, Sévenet T, et al.
    Planta Med, 1995 Feb;61(1):97.
    PMID: 7701009
  12. Coldren CD, Hashim P, Ali JM, Oh SK, Sinskey AJ, Rha C
    Planta Med, 2003 Aug;69(8):725-32.
    PMID: 14531023
    The molecular pathways underlying the diverse biological activity of the triterpeniod compounds isolated from the tropical medicinal plant Centella asiatica were studied with gene microarrays and real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to quantify the expression of 1053 human genes in human fibroblasts. Fibroblast cells grown in culture were used as a model system to evaluate the stimulation of wound healing by titrated extract from Centella asiatica (TECA) as well as by the four principal triterpenoid components of Centella. TECA treatment effects the expression of genes involved in angiogenesis and the remodeling of extracellular matrix, as well as diverse growth factor genes. The extent of expression change of TNFAIP6, an extracellular hyaluronan binding protein, was found to be largely dose-dependent, to respond most strongly to the free acids asiatic acid and madecassic acid, and to increase in expression over 48 hours of treatment. These results show that Centella triterpenes evoke a gene-expression response consistent with their prevailing medical uses in the treatment of connective tissue disorders such as wound healing and microangiopathy. The identification of genes modulated by these compounds provides the basis for a molecular understanding of Centella's bioactivity, and opportunities for the quantitative correlation of this activity with clinical effectiveness at a molecular level.
  13. Jantan I, Pisar MM, Idris MS, Taher M, Ali RM
    Planta Med, 2002 Dec;68(12):1133-4.
    PMID: 12494345
    Rubraxanthone and isocowanol isolated from Garcinia parvifolia Miq. were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets using 3H-PAF as a ligand. Rubraxanthone showed a strong inhibition with IC 50 value of 18.2 microM. The IC 50 values of macluraxanthone, 6-deoxyjacareubin, 2-(3-methylbut-2-enyl)-1,3,5-trihydroxyxanthone, 2-(3-methylbut-2-enyl)-1,3,5,6-tetrahydroxyxanthone and 1,3,5-trihydroxy-6,6'-dimethylpyrano(2',3':6,7)-4-(1,1-dimethylprop-2-enyl)-xanthone were also determined for comparison. In the course of our study on structure-activity relationship of xanthones, the results revealed that a geranyl group substituted at C-8 was beneficial to the binding while a hydroxylated prenyl group at C-4 resulted in a significant loss in binding to the PAF receptor.
  14. Chan KL, Yuen KH, Jinadasa S, Peh KK, Toh WT
    Planta Med, 1997 Feb;63(1):66-9.
    PMID: 9063097
    A high-performance liquid chromatography assay equipped with a glassy carbon electrode for electrochemical detection (HPLC-ECD) was developed at reductive mode for the analysis of artemisinin, the antimalarial drug from Artemisia annua (Asteraceae) in human plasma. This method was selective, sensitive, and produced satisfactory recovery, precision, and accuracy. Analysis of plasma samples from 8 male volunteers given 10 mg kg-1 of artemisinin orally as an aqueous suspension showed a mean peak plasma concentration (Cmax) of 580.89 ng ml-1 +/- 88.64 SD at 2.5 h +/- 0.5 SD after dosing, and the mean area under the plasma concentration-time curve (AUC0-infinity) was 2227.57 ng h ml-1 +/- 677.22 SD. In addition, the elimination rate constant (Ke), elimination half-life (t1/2), and apparent volume of distribution (Vd) were calculated to be 0.2971 h-1 +/- 0.0644 SD, 2.42 h +/- 0.46 SD, and 16.26 l kg-1 +/- 3.44 SD, respectively.
  15. Ebrahimi F, Ibrahim B, Teh CH, Murugaiyah V, Lam CK
    Planta Med, 2017 Jan;83(1-02):172-182.
    PMID: 27399233 DOI: 10.1055/s-0042-110857
    Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The (1)H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The (1)H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotelling's T(2) plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotelling's T(2) plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and discriminated E. longifolia roots from different locations. These findings could be applicable to future research on E. longifolia where the higher content of quassinoids is required.
  16. Seyedan A, Alshawsh MA, Alshagga MA, Mohamed Z
    Planta Med, 2017 May;83(8):684-692.
    PMID: 27992939 DOI: 10.1055/s-0042-121754
    The present study investigated the antiobesity and lipid lowering effects of an ethanolic extract of leaves obtained from Orthosiphon stamineus (200 and 400 mg/kg) and its major compound (rosmarinic acid, 10 mg/kg) in obese mice (C57BL/6) induced by a high-fat diet. Continuous supplementation with O. stamineus extract (200 and 400 mg/kg) for 8 weeks significantly decreased body weight gain (p 
  17. Moideen SV, Houghton PJ, Rock P, Croft SL, Aboagye-Nyame F
    Planta Med, 1999 Aug;65(6):536-40.
    PMID: 10483374
    Dichloromethane extracts of the root bark and stem bark of Kigelia pinnata collected from Zimbabwe exhibited antitrypanosomal activity against Trypanosoma brucei brucei in vitro. Activity-guided fractionation led to the isolation of four naphthoquinones from both the root and stem bark of the plant. The compounds were identified as 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-quinone (1), isopinnatal (2), kigelinol (3), and isokigelinol (4). Subsequently, the compounds were assessed for antitrypanosomal activity against T. brucei brucei and T. brucei rhodesiense bloodstream form trypomastigotes in vitro. Compound 1 with a furanonaphthoquinone structure was found to possess pronounced activity against both parasites with IC50 values of 0.12 and 0.045 microM, respectively, although it was less active than the standard drug pentamidine. Compounds 2, 3, and 4 also exhibited activity against the parasites, although to a lesser extent. The activities of the compounds were further assessed by comparison with the cytotoxic activities obtained against KB cell lines.
  18. Ali AM, Mackeen MM, Hamid M, Aun QB, Zauyah Y, Azimahtol HL, et al.
    Planta Med, 1997 Feb;63(1):81-3.
    PMID: 9063100
    The cytotoxicity of goniothalamin was found to be strong towards both cancerous (HGC-27, MCF-7, PANC-1, HeLa), and non-cancerous (3T3) cell lines, especially in cases of dividing cells. Drug exposure studies indicated that the cytotoxic action of goniothalamin was time- and dose-dependent. At the ultrastructural level, goniothalamin-induced cytotoxicity revealed a necrotic mode of cell death towards MCF-7 cells.
  19. Sirat HM, Rahman AA, Itokawa H, Morita H
    Planta Med, 1996 Apr;62(2):188-9.
    PMID: 17252439
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links