METHODS: In silico target prediction was first employed to predict the probability of the bromophenols interacting with key protein targets based on a model trained on known bioactivity data and chemical similarity considerations. Next, we tested the functional effect of natural bromophenols from Symphyocladia latiuscula on the CCK2 receptor followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein.
RESULTS: Results of cell-based functional G-protein coupled receptor (GPCR) assays demonstrate that bromophenols 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (3) are full CCK2 antagonists. Molecular docking simulation of 1‒3 with CCK2 demonstrated strong binding by means of interaction with prime interacting residues: Arg356, Asn353, Val349, His376, Phe227, and Pro210. Simulation results predicted good binding scores and interactions with prime residues, such as the reference antagonist YM022.
CONCLUSIONS: The results of this study suggest bromophenols 1-3 are CCK2R antagonists that could be novel therapeutic agents for CCK2R-related diseases, especially anxiety and depression.
OBJECTIVE: Herein, we perform a dynamic and longitudinal bibliometric analysis to explore the hotspots and current trends of HMGB1-related PD publications during the past decade.
METHODS: All PD publications focusing on HMGB1 protein were retrieved from the PubMed database using the search terms "Parkinson's disease" and "hmgb1". Using filters, only English articles published between 2011 and 2022 were selected. The Bibliometrix and Biblioshiny packages from R software were used to conduct the bibliometric analysis.
RESULTS: The filtered search identified 47 articles (34 original articles and 13 review articles), published between 2011 and 2022. There was an increase trend in the number of articles published, with an annual growth rate of 19.35 percent. In terms of research and scientific collaboration in this field, the United States is in the lead, followed by China, Malaysia, and Australia. Compared to other countries, the United States and China had the highest level of collaboration in this research area. Neuroinflammation, microglia, and receptor for advanced glycation end-products (RAGE) represent the top three frontiers and hotspots for HMGB1-related PD research. According to the thematic evolution analysis, over the last decade, PD, HMGB1 and microglia were addressed individually, however, since 2017, these topics were frequently discussed within the same cluster: neuroinflammation. Furthermore, PD, HMGB1, and neuroinflammation domains co-occurred in majority of the research discussion.
CONCLUSIONS: The link between HMGB1 and PD was realized a decade ago and becomes increasingly important over time. Our findings can aid scholars in comprehending the global context of HMGB1/PD relationship and provide significant insights for future PD research.
METHODS: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted.
RESULTS: Without FMZ pre-treatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities.
CONCLUSIONS: The present study's findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.