Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Zafar R, Kamel N, Naufal M, Malik AS, Dass SC, Ahmad RF, et al.
    J Integr Neurosci, 2017;16(3):275-289.
    PMID: 28891512 DOI: 10.3233/JIN-170016
    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).
  2. Cacha LA, Ali J, Rizvi ZH, Yupapin PP, Poznanski RR
    J Integr Neurosci, 2017;16(4):493-509.
    PMID: 28891529 DOI: 10.3233/JIN-170038
    Using steady-state electrical properties of non-ohmic dendrite based on cable theory, we derive electrotonic potentials that do not change over time and are localized in space. We hypothesize that clusters of such stationary, local and permanent pulses are the electrical signatures of enduring memories which are imprinted through nonsynaptic plasticity, encoded through epigenetic mechanisms, and decoded through electrotonic processing. We further hypothesize how retrieval of an engram is made possible by integration of these permanently imprinted standing pulses in a neural circuit through neurotransmission in the extracellular space as part of conscious recall that acts as a guiding template in the reconsolidation of long-term memories through novelty characterized by uncertainty that arises when new fragments of memories reinstate an engram by way of nonsynaptic plasticity that permits its destabilization. Collectively, these findings seem to reinforce this hypothesis that electrotonic processing in non-ohmic dendrites yield insights into permanent electrical signatures that could reflect upon enduring memories as fragments of long-term memory engrams.
  3. Paudel P, Park SE, Seong SH, Fauzi FM, Jung HA, Choi JS
    J Integr Neurosci, 2023 Jan 05;22(1):10.
    PMID: 36722239 DOI: 10.31083/j.jin2201010
    BACKGROUND: Cholecystokinin (CCK) is one of the most abundant peptides in the central nervous system and is believed to function as a neurotransmitter as well as a gut hormone with an inverse correlation of its level to anxiety and depression. Therefore, CCK receptors (CCKRs) could be a relevant target for novel antidepressant therapy.

    METHODS: In silico target prediction was first employed to predict the probability of the bromophenols interacting with key protein targets based on a model trained on known bioactivity data and chemical similarity considerations. Next, we tested the functional effect of natural bromophenols from Symphyocladia latiuscula on the CCK2 receptor followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein.

    RESULTS: Results of cell-based functional G-protein coupled receptor (GPCR) assays demonstrate that bromophenols 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (3) are full CCK2 antagonists. Molecular docking simulation of 1‒3 with CCK2 demonstrated strong binding by means of interaction with prime interacting residues: Arg356, Asn353, Val349, His376, Phe227, and Pro210. Simulation results predicted good binding scores and interactions with prime residues, such as the reference antagonist YM022.

    CONCLUSIONS: The results of this study suggest bromophenols 1-3 are CCK2R antagonists that could be novel therapeutic agents for CCK2R-related diseases, especially anxiety and depression.

  4. Razali K, Mohamed WMY
    J Integr Neurosci, 2023 Jul 04;22(4):87.
    PMID: 37519176 DOI: 10.31083/j.jin2204087
    BACKGROUND: Parkinson's disease (PD), the most prevalent motoric neurodegenerative disease, has been intensively studied to better comprehend its complicated pathogenesis. Chronic neuroinflammation is a major factor contributing to the development of PD. Reportedly, high-mobility group box 1 (HMGB1) protein is capable of mediating neuroinflammatory response. In this regard, knowledge mapping of the research linking HMGB1 to PD is necessary.

    OBJECTIVE: Herein, we perform a dynamic and longitudinal bibliometric analysis to explore the hotspots and current trends of HMGB1-related PD publications during the past decade.

    METHODS: All PD publications focusing on HMGB1 protein were retrieved from the PubMed database using the search terms "Parkinson's disease" and "hmgb1". Using filters, only English articles published between 2011 and 2022 were selected. The Bibliometrix and Biblioshiny packages from R software were used to conduct the bibliometric analysis.

    RESULTS: The filtered search identified 47 articles (34 original articles and 13 review articles), published between 2011 and 2022. There was an increase trend in the number of articles published, with an annual growth rate of 19.35 percent. In terms of research and scientific collaboration in this field, the United States is in the lead, followed by China, Malaysia, and Australia. Compared to other countries, the United States and China had the highest level of collaboration in this research area. Neuroinflammation, microglia, and receptor for advanced glycation end-products (RAGE) represent the top three frontiers and hotspots for HMGB1-related PD research. According to the thematic evolution analysis, over the last decade, PD, HMGB1 and microglia were addressed individually, however, since 2017, these topics were frequently discussed within the same cluster: neuroinflammation. Furthermore, PD, HMGB1, and neuroinflammation domains co-occurred in majority of the research discussion.

    CONCLUSIONS: The link between HMGB1 and PD was realized a decade ago and becomes increasingly important over time. Our findings can aid scholars in comprehending the global context of HMGB1/PD relationship and provide significant insights for future PD research.

  5. Jarrar Q, Ayoub R, Jarrar Y, Aburass H, Goh KW, Ardianto C, et al.
    J Integr Neurosci, 2023 Jul 26;22(4):104.
    PMID: 37519168 DOI: 10.31083/j.jin2204104
    BACKGROUND: Mefenamic acid (MFA), a common analgesic, causes central nervous system (CNS) toxicity at high doses with a proposed activity on the Gamma-aminobutyric acid (GABA) system. However, it remains unknown whether flumazenil (FMZ), a GABA type A receptor (GABAAR) antagonist, can reverse MFA toxicity.

    METHODS: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted.

    RESULTS: Without FMZ pre-treatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities.

    CONCLUSIONS: The present study's findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.

  6. Koizumi A, Poznanski RR
    J Integr Neurosci, 2016 Jan 14.
    PMID: 26762484
    The starburst amacrine cell (SAC) plays a fundamental role in retinal motion perception. In the vertebrate retina, SAC dendrites have been shown to be directionally selective in terms of their Ca[Formula: see text] responses for stimuli that move centrifugally from the soma. The mechanism by which SACs show Ca[Formula: see text] bias for centrifugal motion is yet to be determined with precision. Recent morphological studies support a presynaptic delay in glutamate receptor activation induced Ca[Formula: see text] release from bipolar cells preferentially contacting SACs. However, bipolar cells are known to be electrotonically coupled so time delays between the bipolar cells that provide input to SACs seem unlikely. Using fluorescent microscopy and imunnostaining, we found that the endoplasmic reticulum (ER) is omnipresent in the soma extending to the distal processes of SACs. Consequently, a working hypothesis on heterogeneity of intracellular Ca[Formula: see text] dynamics from ER is proposed as a possible explanation for the cause of speed tuning of direction-selective Ca[Formula: see text] responses in dendrites of SACs.
  7. Al-Marri F, Reza F, Begum T, Hitam WHW, Jin GK, Xiang J
    J Integr Neurosci, 2017 Oct 25.
    PMID: 29081422 DOI: 10.3233/JIN-170058
    Visual cognitive function is important to build up executive function in daily life. Perception of visual Number form (e.g., Arabic digit) and numerosity (magnitude of the Number) is of interest to cognitive neuroscientists. Neural correlates and the functional measurement of Number representations are complex occurrences when their semantic categories are assimilated with other concepts of shape and colour. Colour perception can be processed further to modulate visual cognition. The Ishihara pseudoisochromatic plates are one of the best and most common screening tools for basic red-green colour vision testing. However, there is a lack of study of visual cognitive function assessment using these pseudoisochromatic plates. We recruited 25 healthy normal trichromat volunteers and extended these studies using a 128-sensor net to record event-related EEG. Subjects were asked to respond by pressing Numbered buttons when they saw the Number and Non-number plates of the Ishihara colour vision test. Amplitudes and latencies of N100 and P300 event related potential (ERP) components were analysed from 19 electrode sites in the international 10-20 system. A brain topographic map, cortical activation patterns and Granger causation (effective connectivity) were analysed from 128 electrode sites. No major significant differences between N100 ERP components in either stimulus indicate early selective attention processing was similar for Number and Non-number plate stimuli, but Non-number plate stimuli evoked significantly higher amplitudes, longer latencies of the P300 ERP component with a slower reaction time compared to Number plate stimuli imply the allocation of attentional load was more in Non-number plate processing. A different pattern of asymmetric scalp voltage map was noticed for P300 components with a higher intensity in the left hemisphere for Number plate tasks and higher intensity in the right hemisphere for Non-number plate tasks. Asymmetric cortical activation and connectivity patterns revealed that Number recognition occurred in the occipital and left frontal areas where as the consequence was limited to the occipital area during the Non-number plate processing. Finally, the results displayed that the visual recognition of Numbers dissociates from the recognition of Non-numbers at the level of defined neural networks. Number recognition was not only a process of visual perception and attention, but it was also related to a higher level of cognitive function, that of language.
  8. Mohamed W, Eltantawi MA, Agarwal V, Bandres-Ciga S, Makarious MB, Mecheri Y, et al.
    J Integr Neurosci, 2024 Aug 19;23(8):152.
    PMID: 39207075 DOI: 10.31083/j.jin2308152
    Over 80% of genetic studies in the Parkinson's disease (PD) field have been conducted on individuals of European descent. There is a social and scientific imperative to understand the genetic basis of PD across global populations for therapeutic development and deployment. PD etiology is impacted by genetic and environmental factors that are variable by ancestry and region, emphasising the need for worldwide programs to gather large numbers of patients to identify novel candidate genes and risk loci involved in disease. Only a handful of documented genetic assessments have investigated families with PD in AfrAbia, which comprises the member nations of the Arab League and the African Union, with very limited cohort and case-control studies reported. This review article summarises prior research on PD genetics in AfrAbia, highlighting gaps and challenges. We discuss the etiological risk spectrum in the context of historical interactions, highlighting allele frequencies, penetrance, and the clinical manifestations of known genetic variants in the AfrAbian PD patient community.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links