Displaying publications 21 - 40 of 61 in total

Abstract:
Sort:
  1. Samani MA, Babaei S, Naseri M, Majdinasab M, Nafchi AM
    Food Sci Nutr, 2023 Jul;11(7):3767-3779.
    PMID: 37457178 DOI: 10.1002/fsn3.3361
    This research aims to produce an antioxidant and biodegradable polysaccharide film by using macroalgae agar and sulfated polysaccharide. Agar and sulfated polysaccharide (fucoidan) were extracted from Gracilaria corticata and Sargassum angustifolium macroalgae. Five treatments were conducted: (A) agar film (1%, W:V), (C) chitosan film (1%, W:V + 1% acetic acid), (AC) agar:chitosan composite (50:50, V:V), (ACF) AC film with fucoidan (0.5%, W:V), and (ACFA) ACF film with citric acid (30% of the dry weight of film) as a cross-linking agent. Then, 0.75% (V:V) of glycerol was added to all films. The physical, mechanical, antioxidant, color variations, microstructure (SEM), and Fourier transform infrared (FT-IR) spectroscopy were investigated. Based on the results, modifying the agar film with chitosan improved the mechanical strength, humidity, and solubility in the AC composite film (p 
  2. Wong JCJ, Nillian E
    Food Sci Nutr, 2023 Sep;11(9):5364-5378.
    PMID: 37701201 DOI: 10.1002/fsn3.3494
    Coffea liberica, commonly known as Liberica coffee, is a kind of coffee that originated in Liberia, a West African country. It is considered a less-known coffee bean variety, which accounts for less than 2% of commercially produced coffee worldwide. In this study, the influences of optimization of microwave-assisted extraction (MAE) on the total phenolic content (TPC), total flavonoid content (TFC), and total carbohydrate content (TCC) of bioactive compounds extracted from Sarawak Liberica sp. coffee pulp were studied. Response surface methodology was adopted with a face-centered central composite design to generate 34 responses by taking three microwave parameters into consideration, microwave power (watt), time of irradiation (second), and solvent-to-feed ratio as independent variables. As a result, the findings revealed that optimum extraction conditions were conducted as follows: microwave power of 700 W, time of irradiation of 180 s, and solvent-to-feed ratio of 86.644:1. While under optimal extraction conditions, MAE outperformed conventional maceration extraction in terms of extraction efficiency and had no significant difference (p 
  3. Assiry AA, Ahmed N, Almuaddi A, Saif A, Alshahrani MA, Mohamed RN, et al.
    Food Sci Nutr, 2023 Aug;11(8):4853-4860.
    PMID: 37576053 DOI: 10.1002/fsn3.3462
    Antibiotic resistance is rising across the world. For a very long time, bitter ginger (Zingiber zerumbet) has been used as one of the most popular herbal remedies to treat a wide range of common diseases. Ginger has been shown to have antioxidant and antibacterial activity. It has various bioactive chemicals that might be utilized as an alternative treatment option for many infectious diseases. The present study aimed to examine the biochemical profile of ginger, antioxidant, and antibacterial activity against selective endodontic microbes. Antioxidant was measured using DPPH and antibacterial activity was performed using disk diffusion tests. Streptococcus mutants, Enterococcus faecalis, Staphylococcus spp., and Lactobacillus spp. were tested for antibacterial activity. Before evaluating the dried extracts, all solvents were eliminated using rotary evaporation. The obtained IC50 value revealed that ethanol extract had the greatest antioxidant activity. Concerning each bacterium, the plant extracts demonstrated considerable antibacterial activity (p = .001). Ethanol extracts showed the strongest antibacterial activity against the studied microorganisms. This study highlights that the Zingiber zerumbet (Z. zerumbet) is a strong antibacterial herb against multidrug-resistant (MDR) gram-positive bacteria. It may also be employed as a possible natural antioxidant source.
  4. Ahmad A, Yap WB, Kofli NT, Ghazali AR
    Food Sci Nutr, 2018 Sep;6(6):1370-1377.
    PMID: 30258578 DOI: 10.1002/fsn3.672
    Lactic acid bacterium isolated from fermented durian (tempoyak) was investigated for its potentials as a probiotic strain. Bacterial tolerance toward gastrointestinal environment, adhesion, and cytotoxic activity in human colon adenocarcinoma cell line HT-29 was evaluated. 16S rRNA sequencing identified the lactic acid bacterium as Lactobacillus plantarum. The bacterium demonstrated good tolerance toward gastrointestinal pH 2.0 and 0.3% bile salts. It showed strong adhesive capacity in human intestinal cell line, HT-29, with an adhesion index of 159 ± 10. Cytotoxicity of L. plantarum was investigated using both live bacterial cells (BC) and cell-free supernatant (CFS). Findings showed that both BC and CFS of L. plantarum reduced proliferation of HT-29 colon adenocarcinoma cells using MTT assay. The results imply potential probiotic properties of L. plantarum isolated from tempoyak.
  5. Azlim NA, Mohammadi Nafchi A, Oladzadabbasabadi N, Ariffin F, Ghalambor P, Jafarzadeh S, et al.
    Food Sci Nutr, 2022 Feb;10(2):597-608.
    PMID: 35154695 DOI: 10.1002/fsn3.2680
    A novel intelligent pH-sensing indicator based on gelatin film and anthocyanin extracted from dragon fruit skin (Hylocereus polyrhizus) (DFSE) as a natural dye was developed to monitor food freshness by the casting method. Anthocyanin content of DFSE was 15.66 ± 1.59 mg/L. Dragon fruit bovine gelatin films were characterized by Fourier transform infrared spectroscopy (FTIR) and observed by a scanning electron microscope (SEM). Moisture content, mechanical properties, water solubility, water vapor permeability (WVP), light transmittance, color, and pH-sensing evaluations were evaluated for potential application. FTIR spectroscopy revealed that the extracted anthocyanin could interact with the other film components through hydrogen bonds. When the extract was added, films showed a smooth and clear surface as observed by SEM. The addition of anthocyanin increased the moisture content, thickness, and water solubility of the films, but decreased the WVP and light transmittance of films. Also, the incorporation of 15% v/v DFSE decreased the tensile strength from 17.04 to 12.91 MPa, increasing the elongation at break from 91.19% to 107.86%. The films showed higher ΔE with increasing DFSE content, which indicated that the film had good color variability. A significant difference in the color of the films was observed with exposure to different pH buffer solutions. The findings demonstrated that gelatin film incorporated with DFSE could be used as a visual indicator of pH variations to monitor the freshness of foods during storage time.
  6. Mahmood K, Kamilah H, Alias AK, Ariffin F, Mohammadi Nafchi A
    Food Sci Nutr, 2022 Feb;10(2):584-596.
    PMID: 35154694 DOI: 10.1002/fsn3.2676
    In the current study, fish gelatin-based nanofiber mats were embedded with different bioactive agents (BAs) such as cinnamaldehyde (CEO), limonene (LEO), and eugenol (EEO) at 1, 3, and 5% via electrospinning, and their effects on the morphological, structural, mechanical, thermal, antioxidant, antimicrobial, and bread packaging properties of the mats were evaluated. The gelatin mats presented different physicochemical properties due to the inherent differences in the chemical structure of the added BAs and their interaction with the gelatin chains. The conductivity, surface tension, and viscosity of gelatin dopes changed with the presence of the BAs, yet the electrospun nanofibers showed defect-free uniform morphology as confirmed by electron microscopy, with no significant change in the chemical structure of gelatin. The melting temperature of gelatin mats remained in the range of 187-197°C. The mats presented lower tensile strength and elongation at break by the addition of BAs compared with the pristine gelatin mat. The highest radical scavenging (90%) was yielded by mats with EEO, while mats with CEO depicted better antibacterial activity with an inhibition zone of 18.83 mm. However, a dose-dependent increase in the antifungal properties was noticed for all the mats. The mats retained almost 50% of BAs after 60 days of storage at 45% relative humidity. Electrospun gelatin mats inhibited the aerobic bacteria (81%) and yeast and molds (61%) in preservative-free bread after 10 days of storage.
  7. Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Zyoud TYT, Rahim EBA, et al.
    Food Sci Nutr, 2023 May;11(5):2211-2231.
    PMID: 37181299 DOI: 10.1002/fsn3.3096
    A substantial global health burden is associated with neurotoxicity caused by lead (Pb) exposure and the common mechanism of this toxicity is mainly via oxidative damage. Curcumin has remarkable pharmacological activities but remains clinically constrained due to its poor bioavailability when orally administered. Currently, cockle shell-derived calcium carbonate nanoparticle (CSCaCO3NP) is gaining more acceptance in nanomedicine as a nanocarrier to various therapeutics. This study aimed at investigating the ameliorative effect of curcumin-loaded CSCaCO3NP (Cur-CSCaCO3NP) on lead-induced neurotoxicity in rats. A total of 36 male Sprague-Dawley rats were randomly assigned into five groups. Each group consists of 6 rats apart from the control group which consists of 12 rats. During the 4 weeks induction phase, all rats received a flat dose of 50 mg/kg of lead while the control group received normal saline. The treatment phase lasted for 4 weeks, and all rats received various doses of treatments as follows: group C (Cur 100) received 100 mg/kg of curcumin, group D (Cur-CSCaCO3NP 50) received 50 mg/kg of Cur-CSCaCO3NP, and group E (Cur-CSCaCO3NP 100) received 100 mg/kg of Cur-CSCaCO3NP. The motor function test was carried out using the horizontal bar method. The cerebral and cerebellar oxidative biomarker levels were estimated using ELISA and enzyme assay kits. Lead-administered rats revealed a significant decrease in motor scores and SOD activities with a resultant increase in MDA levels. Furthermore, marked cellular death of the cerebral and cerebellar cortex was observed. Conversely, treatment with Cur-CSCaCO3NP demonstrated enhanced ameliorative effects when compared with free curcumin treatment by significantly reversing the aforementioned alterations caused by lead. Thus, CSCaCO3NP enhanced the efficacy of curcumin by ameliorating the lead-induced neurotoxicity via enhanced attenuation of oxidative stress.
  8. Syarifa R, Esmaeili Y, Jafarzadeh S, Garavand F, Mahmud S, Ariffin F
    Food Sci Nutr, 2023 Nov;11(11):7373-7382.
    PMID: 37970401 DOI: 10.1002/fsn3.3665
    Biodegradable films are extremely important for food packaging applications since they minimize environmental effects. However, their application areas are limited due to insufficient characteristics required for particular applications. The objective of the present research was to improve the properties of sago-based biodegradable films embedded with nano- and micro-ZnO (zinc oxide). Nano and micro-ZnO were incorporated in the films at different percentages (1%, 3%, and 5%) in that the films were formed using the solvent casting method. The physicochemical, barrier, thermal, optical, morphology, and mechanical properties of sago-based films were investigated. Adding 5% of micro- and nano-ZnO significantly improved film thickness (0.162 and 0.150 mm, respectively) and WVP (4.40 and 5.64 (kg/s)/(m.Pa), respectively) while the optical properties and thermal stability exhibited superior performance. Micro-ZnO particles improved the mechanical properties of sago-based biodegradable films with the tensile strength reaching 6.173 MPa. Moreover, sago-based nano-ZnO films showed excellent UV-shielding performance and relatively good visible-light transmittance. This study suggested that sago biodegradable film incorporated with micro-ZnO could be an excellent alternative to petroleum-based plastic packaging.
  9. S Mohamed NT, Ding P, Kadir J, M Ghazali H
    Food Sci Nutr, 2017 Sep;5(5):967-980.
    PMID: 28948014 DOI: 10.1002/fsn3.482
    Crown rot caused by fungal pathogen is the most prevalent postharvest disease in banana fruit that results significant economic losses during transportation, storage, and ripening period. Antifungal effects of ultraviolet C (UVC) irradiation at doses varied from 0.01 to 0.30 kJ m-2 were investigated in controlling postharvest crown rot disease, maintenance of fruit quality, and the effects on antioxidant capacity of Berangan banana fruit during ripening days at 25 ± 2°C and 85% RH. Fruits irradiated with 0.30 kJ m-2 exhibited the highest (i.e., 62.51%) reduction in disease severity. However, the application of UVC at all doses caused significant browning damages on fruit peel except the dose of 0.01 kJ m-2. This dose synergistically reduced 46.25% development of postharvest crown and did not give adverse effects on respiration rate, ethylene production, weight loss, firmness, color changes, soluble solids concentration, titratable acidity, and pH in banana as compared to the other treatments and control. Meanwhile, the dose also enhanced a significant higher level of total phenolic content, FRAP, and DPPH values than in control fruits indicating the beneficial impact of UVC in fruit nutritional quality. The results of scanning electron micrographs confirmed that UVC irradiation retarded the losses of wall compartments, thereby maintained the cell wall integrity in the crown tissue of banana fruit. The results suggest that using 0.01 kJ m-2 UVC irradiation dose as postharvest physical treatment, the crown rot disease has potential to be controlled effectively together with maintaining quality and antioxidant of banana fruit.
  10. Ab Lah R, Smith J, Savins D, Dowell A, Bucher D, Benkendorff K
    Food Sci Nutr, 2017 Jan;5(1):14-30.
    PMID: 28070312 DOI: 10.1002/fsn3.360
    Turban snails (family Turbinidae) are gastropod molluscs that are harvested for human consumption yet little is known about the nutritional properties of these snails, particularly from Australian waters. This study compares the proximate composition (ash, moisture, protein, and lipid content), fatty acid profiles, mineral, and trace element content of three species of turbinid snails; Turbo militaris, Lunella undulata, and Lunella torquata from northern New South Wales, Australia. They were all found to have relatively high protein in their flesh (16.0% to 18.5% of the fresh weight). L. torquata had a significantly higher lipid content (8.5% w/w) than L. undulata (5.2% w/w), whereas T. militaris (5.6% w/w) was not significantly different to either. Analysis with gas chromatography showed there was no significant difference in monounsaturated fatty acid (MUFA) content, with an average of approximately 14% of the total fatty acids in all three species. However, saturated fatty acids (SFA) were significantly higher in T. militaris (41%), whereas polyunsaturated fatty acids (PUFA) were significantly higher in L. undulata (46%). The ratio of n-3/n-6 fatty acids ranged from 1.1 in T. militaris to 1.4 in L. torquata, which is good for human health and comparable to other high value gastropods. The results indicate that T. militaris, L. undulata, and L. torquata provide a good source of essential elements such as zinc, selenium, and iron. At the location studied, toxic metals and metalloids were below safe recommended standards for human consumption. Overall, this study confirms the suitability of turban snails as a nutritional food for human consumption.
  11. Asghar MT, Yusof YA, Mokhtar MN, Ya'acob ME, Mohd Ghazali H, Chang LS, et al.
    Food Sci Nutr, 2020 Apr;8(4):1777-1787.
    PMID: 32328243 DOI: 10.1002/fsn3.1191
    This study was carried out to compare the antioxidant and nutritional properties of coconut (Cocos nucifera L.) sap with other natural sources of sugar such as sugar palm (Borassus flabellifer) and sugarcane (Saccharum officinarum L.). Coconut sap and juice from sugar palm and sugarcane were analyzed for proximate composition, pH and total soluble solid (TSS), color, sugar profile, vitamin profile, antioxidant properties (total phenolic contents, DPPH, FRAP, and ABTS), and mineral content. The results indicated that coconut sap possesses high DPPH (23.42%), FRAP (2.09 mM/ml), and ABTS (21.85%) compared with the juices. Coconut sap also had high vitamin C (116.19 µg/ml) and ash (0.27%) contents, especially in potassium (960.87 mg/L) and sodium (183.21 mg/L) which also indicating high content of minerals. These properties showed that coconut sap could be served as a potential healthier sugar source compared with sugar palm and sugarcane juices.
  12. Ramli NS, Jia H, Sekine A, Lyu W, Furukawa K, Saito K, et al.
    Food Sci Nutr, 2020 May;8(5):2512-2523.
    PMID: 32405407 DOI: 10.1002/fsn3.1545
    Obesity is a major global lifestyle disorder associated with gut microbiota. The health benefits of eggshell membrane (ESM) have been shown in previous reports, particularly as regards gut microbiota composition. Here, we investigated whether ESM improves lipid metabolism and alters gut microbiota in high-fat diet-fed mice. A total of 20 C57BL/6J mice aged 6 weeks were given either a control diet (CON), high-fat diet (HFD), or high-fat diet + 8% ESM powder (HESM) for 20 weeks. ESM supplementation in HFD-fed mice reduced plasma triglycerides (TG) and liver total cholesterol (TC) and upregulated the expression of lipid metabolism genes carnitine palmitoyltransferase 1A and suppressor of cytokine signaling 2. Microbiota analysis showed increased relative abundance of the anti-obesity bacterium, Lactobacillus reuteri, at 4, 12, and 16 weeks and reduced the abundance of inflammation-related Blautia hydrogenotrophica, Roseburia faecis, and Ruminococcus callidus at 12 and 20 weeks. ESM-supplemented mice had increased cecal isobutyrate, negatively correlated with B. hydrogenotrophica and Parabacteroides goldsteinii abundance. The results indicate that ESM supplementation in HFD-fed mice reduced plasma TG and liver TC, possibly through alteration of lipid metabolism gene expression and gut microbiota composition, suggesting that ESM may be effective in obesity management.
  13. Lim SF, Hamdan A, David Chua SN, Lim BH
    Food Sci Nutr, 2021 May;9(5):2722-2732.
    PMID: 34026085 DOI: 10.1002/fsn3.2234
    The lemongrass plant, which is widely cultivated in Asia, Australia, and Africa, has been reported to have many significant health benefits such as antimicrobial, insecticide, anticancer, fight fever, and disinfection. Therefore, it is an added benefit to have lemongrass compounds in cooking oil. This study was aimed to compare the conventional (CSE), and ultrasound-assisted solvent extraction (UASE) for citral compounds from lemongrass (Cymbopogon) leaves and to optimize the best extraction method using the response surface methodology (RSM) and ANOVA. RSM design of experiments using three types of cooking oils; palm oil, sunflower oil, and corn oil. The effect of three independent variables, which are temperature (48.2-81.8°C), extraction time (4.8-55.2 min), and solvent to leaves ratio (5.3-18.7), was investigated. The characterization of lemongrass-infused cooking oil was evaluated by Fourier transform infrared spectroscopy (FT-IR), Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM) analysis for confirmation of the citral compound extraction. This extraction process is optimized using Response Surface Methodology (RSM) for producing the lemongrass-infused cooking oil. After optimization, the UASE process gives 1.009 × 106 maximum citral area for palm oil and 1.767 × 106 maximum citral area for sunflower oil. CSE process only can give 2.025 × 105 and 2.179 × 105 citral area in the GC-MS spectrum for palm oil and sunflower oil respectively. For both the UASE and the CSE, the optimum operating conditions are 81.8°C of extraction temperature and 55.2 min of extraction time except for lemongrass-infused palm oil in the CSE process with 45 min extraction time. The optimum solvent to leaves ratio varies from 5.3:1 to 12.9:1. This study found that corn oil cannot be used as a solvent to extract lemongrass-infused cooking oil due to the insignificant changes and no citral peak. The lemongrass (Cymbopogon)-infused palm oil and sunflower oil extracted using the UASE have a higher maximum citral area than the CSE process.
  14. Moslehi Z, Mohammadi Nafchi A, Moslehi M, Jafarzadeh S
    Food Sci Nutr, 2021 May;9(5):2576-2584.
    PMID: 34026073 DOI: 10.1002/fsn3.2212
    Pistachio is a nut with high consumption that could be affected by aflatoxin contamination, which affects the consumption market; therefore, broad studies seem to be necessary for this area. In the current study, pistachio nuts (Abbasali variety) were coated with different concentrations (0.1%, 0.5%, 1%, and 2%) of methylcellulose (MC) by immersion method and then stored in the incubator (25°C) for four months. The inhibitory effect of hydrocolloid coating on microbial (mold, yeast, and total count) and aflatoxin (B1, B2, G1, G2, and total aflatoxin) contamination, as well as sensory attributes (flavor, color, crispiness, aroma, and total acceptability), was investigated during storage periods. Results showed that the storage period had a significant effect on yeast, mold, and total count. HPLC analysis results showed that coating with MC had a significant inhibitory effect on aflatoxin contamination, and the highest amount of aflatoxin contamination was related to the control sample (3.5%). All samples except sample coated with MC 0.5% had appropriate total acceptability. Regarding the inhibitory effect of MC edible coating on aflatoxin contamination, its application on pistachio nut could be a promising approach to control the fungus infection and reduce aflatoxin production in coated pistachio.
  15. Hossen MA, Ali Reza ASM, Amin MB, Nasrin MS, Khan TA, Rajib MHR, et al.
    Food Sci Nutr, 2021 Jul;9(7):3836-3851.
    PMID: 34262741 DOI: 10.1002/fsn3.2362
    Blumea lacera is an edible plant with imperative medicinal values. However, the anxiolytic and antidepressant roles of B. lacera have not been well-explained. Therefore, the current study aims to explore the impending bioactive metabolites and roles of B. lacera methanol leaf extract (Me-BLL) in attenuating anxiety and depression through several experimental and computer-aided approaches. The chemical characterization of Me-BLL was performed through standard phytochemical and GC-MS analyses. To explore the neuropharmacological insights, Swiss albino mice were treated with Me-BLL at doses of 200-400 mg/kg, p.o. The anxiolytic effects were observed employing elevated plus maze (EPM), light-dark box (LDB), and hole-board (HBT) tests, while antidepressant effects were evaluated using forced swimming (FST) and tail suspension tests (TST). Diazepam (1 mg/kg, i.p.) and fluoxetine HCl (20 mg/kg, p.o.) were used as the reference standard. The phytochemical analyses revealed several bioactive metabolites, including higher contents of total phenolics and flavonoids. The EPM and LDB tests demonstrated an increased time spent in open arms and light box, and the HBT showed an increased number of head dipping, indicating the anxiolytic effects of Me-BLL. The TST and FST revealed a decrease in immobility time, meaning the persuasive antidepressant effects. The antioxidative effects of Me-BLL have also been observed prominently. Correspondingly, the computer-aided investigation confirmed several bioactive lead molecules. Specifically, thymol and cuminol revealed potential anxiolytic and antioxidant effects, while stigmast-5-en-3.beta.-ol and gamma-sitosterol possessed promising antidepressant effects. Taken these results as a base, the plant has imperative potentials in managing anxiety and depression-like disorders.
  16. Chang S, Mohammadi Nafchi A, Baghaie H
    Food Sci Nutr, 2021 Jul;9(7):3732-3739.
    PMID: 34262732 DOI: 10.1002/fsn3.2334
    The aim of this research was to evaluate the effect of active polyethylene film (PE) containing linalool and thymol active components on the microbial shelf life of mozzarella cheese. PE films containing different concentrations of linalool or thymol (0%, 1%, 1.5% and 2%) were prepared. The antimicrobial properties of the films were examined, and mozzarella cheese was packed with these active films. The antimicrobial properties of packed samples during 30 days of storage were studied. The obtained results from film tests showed that by increasing the concentration of active agents (linalool and thymol) in PE films, the antimicrobial activities of film samples against Escherichia coli, Staphylococcus aureus, Listeria innocua, and Saccharomyces cervicea were increased. The cheese tests result demonstrated that mozzarella cheese packaging with PE films containing different concentrations of linalool and thymol leads to a decreased growth rate of molds and yeasts in cheeses. At the end of the storage period, the lowest number of molds and yeasts was for a sample packed in PE film containing 2% thymol, which increased from 1.00 to 1.21 Log CFU/g during the storage period. From E. coli and S. aureus contamination, the samples packed in active films were safe until the last day of storage (30th day), while the control sample was unacceptable at 17th day of storage. According to obtained results from this study, it was concluded that the addition of linalool and thymol active components to PE film had a positive effect on the extension of the mozzarella scheese shelf life.
  17. Babapour H, Jalali H, Mohammadi Nafchi A
    Food Sci Nutr, 2021 Jul;9(7):3893-3905.
    PMID: 34262746 DOI: 10.1002/fsn3.2371
    The purpose of this study was to evaluate the effects of a combination of zinc oxide (ZnO-N) nanoparticles and fennel essential oil (FEO) on the functional and antimicrobial properties of potato starch films. Films based on potato starch containing a combination of ZnO-N (1, 3, and 5%(w/w)) and FEO (1, 2, and 3% (w/w)) produced by casting method and water solubility, water absorption capacity (WAC), barrier properties, mechanical properties, color indexes, and antimicrobial activity of the films against Staphylococcus aureus, Escherichia coli, and Aspergillus flavus were studied. The combination of ZnO-N and FEO had a significant decreasing effect on solubility, WAC, water vapor and oxygen permeability, elongation, and L* index. These additives had an increasing impact on tensile strength, Yang's modulus, and a* and b* indexes (p 
  18. Kokabian A, Daraei Garmakhany A, Jafarzadeh S, Aghajani N
    Food Sci Nutr, 2021 Jan;9(1):331-344.
    PMID: 33473296 DOI: 10.1002/fsn3.1998
    The demand for consuming low-fat or nonfat dairy products, especially fat-free yoghurt, has increased considerably because of the effects of high-fat diet on human health during the two past decades. Generally, consumers prefer low-fat products to the same high-fat products. For this reason, manufacturers are looking for an ideal source for replacing fat substitute. In this research, the effect of grape seed oil (GSO) as a fat replacement on different quality attributes of the produced set yoghurt was determined. The effect of diverse ratios (3:0, 1.5:1.5, and 0.5:3%) of milk fat and GSO on the change in the quality attributes of the set yoghurt for up to 22 days of refrigeration period (4 ± 1°C) was investigated. Statistical analysis revealed that increase in GSO concentration leads to a significant increase (p 
  19. Mohd Rosmi NSA, Shafie NH, Azlan A, Abdullah MA
    Food Sci Nutr, 2021 Feb;9(2):875-887.
    PMID: 33598171 DOI: 10.1002/fsn3.2051
    Mixtures of selected functional foods (MSFF) were composed of nattokinase (fermented soybean), red yeast rice extract, Ginkgo biloba, oat fiber, garlic, bee pollen, and propolis as anti-hypercholesterolemic were studied. The goal of this study was to determine the bioactive compounds in these mixtures and their cholesterol-lowering potential effects (biochemical profiles, lipid peroxidation, liver tissue histopathology, and enzymatic activity analysis; HMGCoA reductase and ACAT2. The LC-MS/MS analysis showed that bioactive compounds such as Monacolin K, naringin, tocopherol, and glutamate, which have potential as anti-hypercholesterolemic agents, were present in these functional food mixtures. MSFF supplementation at 50 mg/kg 100 mg/kg and 200 mg/kg showed substantial reductions in serum lipid profiles (TC and LDL) (p 
  20. Li L, Shuai L, Sun J, Li C, Yi P, Zhou Z, et al.
    Food Sci Nutr, 2020 Feb;8(2):1284-1294.
    PMID: 32148834 DOI: 10.1002/fsn3.1417
    Mango (Mangifera indica L.) is respiratory climacteric fruit that ripens and decomposes quickly following their harvest. 1-methylcyclopropene (1-MCP) is known to affect the ripening of fruit, delaying the decay of mango stored under ambient conditions. The objective of this study was to clarify the role of 1-MCP in the regulation of ethylene biosynthesis and ethylene receptor gene expression in mango. 1-MCP significantly inhibited the 1-aminocyclopropane-1-carboxylic acid (ACC) content. The activity of ACC oxidase (ACO) increased on days 6, 8, and 10 of storage, whereas delayed ACC synthase (ACS) activity increased after day 4. The two homologous ethylene receptor genes, ETR1 and ERS1 (i.e., MiETR1 and MiERS1), were obtained and deposited in GenBank® (National Center for Biotechnology Information-National Institutes of Health [NCBI-NIH]) (KY002681 and KY002682). The MiETR1 coding sequence was 2,220 bp and encoded 739 amino acids (aa). The MiERS1 coding sequence was 1,890 bp and encoded 629 aa, similar to ERS1 in other fruit. The tertiary structures of MiETR1 and MiERS1 were also predicted. MiERS1 lacks a receiver domain and shares a low homology with MiETR1 (44%). The expression of MiETR1 and MiERS1 mRNA was upregulated as the storage duration extended and reached the peak expression on day 6. Treatment with 1-MCP significantly reduced the expression of MiETR1 on days 4, 6, and 10 and inhibited the expression of MiETR1 on days 2, 4, 6, and 10. These results indicated that MiETR1 and MiERS1 had important functions in ethylene signal transduction. Treatment with 1-MCP might effectively prevent the biosynthesis of ethylene, as well as ethylene-induced ripening and senescence. This study presents an innovative method for prolonging the storage life of mango after their harvest through the regulation of MiETR1 and MiERS1 expression.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links