OBJECTIVE: This paper proposes a novel technique for reorganisation of opinion order to interval levels (TROOIL) to prioritise the patients with MCDs in real-time remote health-monitoring system.
METHODS: The proposed TROOIL technique comprises six steps for prioritisation of patients with MCDs: (1) conversion of actual data into intervals; (2) rule generation; (3) rule ordering; (4) expert rule validation; (5) data reorganisation; and (6) criteria weighting and ranking alternatives within each rule. The secondary dataset of 500 patients from the most relevant study in a remote prioritisation area was adopted. The dataset contains three diseases, namely, chronic heart disease, high blood pressure (BP) and low BP.
RESULTS: The proposed TROOIL is an effective technique for prioritising patients with MCDs. In the objective validation, remarkable differences were recognised among the groups' scores, indicating identical ranking results. In the evaluation of issues within all scenarios, the proposed framework has an advantage of 22.95% over the benchmark framework.
DISCUSSION: Patients with the most severe MCD were treated first on the basis of their highest priority levels. The treatment for patients with less severe cases was delayed more than that for other patients.
CONCLUSIONS: The proposed TROOIL technique can deal with multiple DM problems in prioritisation of patients with MCDs.
OBJECTIVE: This study aimed to review and analyse literature related to the detection and classification of acute leukaemia. The factors that were considered to improve understanding on the field's various contextual aspects in published studies and characteristics were motivation, open challenges that confronted researchers and recommendations presented to researchers to enhance this vital research area.
METHODS: We systematically searched all articles about the classification and detection of acute leukaemia, as well as their evaluation and benchmarking, in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 2007 to 2017. These indices were considered to be sufficiently extensive to encompass our field of literature.
RESULTS: Based on our inclusion and exclusion criteria, 89 articles were selected. Most studies (58/89) focused on the methods or algorithms of acute leukaemia classification, a number of papers (22/89) covered the developed systems for the detection or diagnosis of acute leukaemia and few papers (5/89) presented evaluation and comparative studies. The smallest portion (4/89) of articles comprised reviews and surveys.
DISCUSSION: Acute leukaemia diagnosis, which is a field requiring automated solutions, tools and methods, entails the ability to facilitate early detection or even prediction. Many studies have been performed on the automatic detection and classification of acute leukaemia and their subtypes to promote accurate diagnosis.
CONCLUSIONS: Research areas on medical-image classification vary, but they are all equally vital. We expect this systematic review to help emphasise current research opportunities and thus extend and create additional research fields.