Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Ng CM, Kaur S, Koo HC, Mukhtar F, Yim HS
    J Nutr Educ Behav, 2022 Feb;54(2):100-108.
    PMID: 35148868 DOI: 10.1016/j.jneb.2021.04.006
    OBJECTIVE: To evaluate the effectiveness of a culinary nutrition education intervention on children's home food availability and psychosocial factors related to healthy meal preparation.

    DESIGN: Randomized-controlled trial.

    SETTING: Schools in Kuala Lumpur, Malaysia.

    PARTICIPANTS: Eighty-three school children aged 10-11 years and their parents.

    INTERVENTION: Twelve weeks of culinary nutrition education with 5 hands-on healthy meal preparation modules and a module with parents on home food availability (conducted every 2 weeks).

    MAIN OUTCOME MEASURES: Psychosocial factors (knowledge, attitude, practice, and self-efficacy) related to healthy meal preparation and home food availability (fruits, vegetables, healthful foods, and less healthful foods) assessed via children and parents, respectively, using validated questionnaires at baseline, postintervention, and 3-month follow-up.

    ANALYSIS: Repeated measures ANOVA.

    RESULTS: Intervention group had a higher (P < 0.001) mean knowledge score (mean difference, 1.2), attitude (mean difference, 2.6), practice (mean difference, 4.4) and self-efficacy (mean difference, 3.9) of healthy meal preparation as compared with control group across 3-time points. Improvements were seen in the availability of fruits (mean difference, 3.0; P < 0.001), vegetables (mean difference, 2.4; P < 0.001), healthful foods (mean difference, 1.5; P < 0.001) and less healthful foods (mean difference, -0.9; P = 0.001), favoring the intervention group.

    CONCLUSION AND IMPLICATIONS: Culinary nutrition education had positive impact on children's psychosocial factors and home food availability, demonstrating the potential to improve children's nutrition.

  2. Kee PE, Yim HS, Kondo A, Lan JC, Ng HS
    Mar Drugs, 2021 Aug 17;19(8).
    PMID: 34436302 DOI: 10.3390/md19080463
    Aqueous biphasic electrophoresis system (ABES) incorporates electric fields into the biphasic system to separate the target biomolecules from crude feedstock. Ionic liquid (IL) is regarded as an excellent candidate as the phase-forming components for ABES because of the great electrical conductivity, which can promote the electromigration of biomolecules in ABES, and thereby enhances the separation efficiency of the target biomolecules from crude feedstock. The application of electric fields to the conventional biphasic system expedites the phase settling time of the biphasic system, which eases the subsequent scaling-up steps and reduces the overall processing time of the recovery process. Alkyl sulphate-based IL is a green and economical halide-free surfactant when compared to the other halide-containing IL. The feasibility of halide-free IL-based ABES to recover Kytococcus sedentarius TWHK01 keratinase was studied. Optimum partition coefficient (Ke = 7.53 ± 0.35) and yield (YT = 80.36% ± 0.71) were recorded with IL-ABES comprised of 15.0% (w/w) [EMIM][ESO4], 20.0% (w/w) sodium carbonate and 15% (w/w) crude feedstock. Selectivity (S) of 5.75 ± 0.27 was obtained with the IL-ABES operated at operation time of 5 min with 10 V voltage supplied. Halide-free IL is proven to be a potential phase-forming component of IL-ABES for large-scale recovery of keratinase.
  3. Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, et al.
    Biomed Pharmacother, 2021 Dec;144:112333.
    PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333
    Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
  4. Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al.
    J Biosci Bioeng, 2018 May;125(5):585-589.
    PMID: 29339003 DOI: 10.1016/j.jbiosc.2017.12.010
    Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.
  5. Kee PE, Cheng YS, Chang JS, Yim HS, Tan JCY, Lam SS, et al.
    Environ Res, 2023 Mar 15;221:115284.
    PMID: 36640934 DOI: 10.1016/j.envres.2023.115284
    With rapid growing world population and increasing demand for natural resources, the production of sufficient food, feed for protein and fat sources and sustainable energy presents a food insecurity challenge globally. Insect biorefinery is a concept of using insect as a tool to convert biomass waste into energy and other beneficial products with concomitant remediation of the organic components. The exploitation of insects and its bioproducts have becoming more popular in recent years. This review article presents a summary of the current trend of insect-based industry and the potential organic wastes for insect bioconversion and biorefinery. Numerous biotechnological products obtained from insect biorefinery such as biofertilizer, animal feeds, edible foods, biopolymer, bioenzymes and biodiesel are discussed in the subsequent sections. Insect biorefinery serves as a promising sustainable approach for waste management while producing valuable bioproducts feasible to achieve circular bioeconomy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links